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1 INTRODUCTION-

This reports the results of an AFRPL-sponsored effort spanning the

period 1 June 1984 - 31 August 1985 which developed computer programs

for optimization of orbital maneuvering and applied them to the study of

attack and evasion sequences.

Rocket burns are modelled impulsively, the fuel consumed in such a

maneuver being related directly to the magnitude of the velocity-vector |

increment, AV, in the usual way. Coasting arcs are conics,

corresponding to an inverse-square-law gravity model, in one version of

the computer program developed, this choice facilitating future develop-

ment of a general-purpose program. In another version, near-circular-

orbit coast modelling is adopted, which offers simplifications "-

attractive for evasion-and-return sequences and their real-time cal-

culation (Refs. 1, 2 and 3). A variety of operational constraints on

maneuver sequences is provided including minimum-radius constraints, ,.

which turn out to be important in the generation of optimal co-orbital

attack-maneuver sequences. Performance indices employed are minimum

fuel, with or without time constraints, and minimum time with limited

fuel.

The optimization is cast in the form of a nonlinear-programing

problem: a n-vector, x, is to be found so as to minimize a performance

index f(x) subject to some equality constraints of the form gi(x) = 0,

i =1, --- , m, and some inequality constraints of the form gm+j(x) >0, V4.

J=1, --1, p. Here the x components include the AV components of each

burn and the times (or positions) at which they occur. The g functions

describe constraints such as the intercept condition (position vectors
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equal at final time) and the rendezvous condition (velocity vectors

equal at final time) as well as various other constraints. The non-

*-.'. 

linear-programming algorithm presently employed is basically that of

Refs. 4 and 5. Updating includes the use of the BFGS variable metric r
in place of the older DFP and the addition of advanced active-constraint

logic (Ref. 6) in connection with projection treatment of constraints.

The algorithm is described in Appendix A.

The computer software developed (some of it adapted from earlier

efforts) is herein applied to the study of co-orbital attack-maneuver

sequences against a nonmaneuvering target. Initially minimum-AV

sequences are explored with intercept time open and a bare minimum of

operational constraints. As will be seen, it turns out to be important

to include minimum-radius constraints for realistic results; this

feature has rarely previously been included in orbit-transfer studies.

(The state of the art in the context of analytical methods is described

in Ref. 7 while Ref. 8 is representative of current computational

approaches.) The effects of various operational constraints are

explored and qualitative comparisons drawn with observed Soviet ASAT-

* system maneuver sequence (Ref. 9).

Optimal in-plane evasive maneuvering is investigated analytically

and computationally herein with the use of the Clohessy-Wiltshire

near-circular-orbit model (Refs. 1, 2 and 3) which is adequate for

low altitude maneuvering studies and attractive for its analytical

simplicity. Ahe evasive maneuver optimization of Ref. 3 is extended to

include return-to-orbit and return-to-position-in-orbit constraints.
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Some suggestions are offered for future extension and applications

in a closing section.
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2. IMPULSE-COAST MANEUVER-SEQUENCE MODELLING

This section details the mathematical models used for the

intercept-maneuver sequences and the evasive-maneuver sequences. The

former uses the complete inverse-square-law gravitational model while

the latter uses a linearized version of the inverse-square-law sug-

gested by Clohessy and Wiltshire for near-circular orbits (Ref. 1).

Intercept-Maneuver Modelling

The intercept-maneuver sequences studied subsequently model the

motion of the vehicle as a sequence of unpowered coasting arcs with

velocity impulses of their junctions. The coasting arcs are

Keplerian orbits (conics) with the exception of the first arc which

consists of circular motion due to a fixed point on the surface of a

rotating earth. The computer code developed for the intercept portion

of the mission models the coasting arcs as either an earth-bound arc

or a Keplerian arc. The structure of the code, however, allows for

other models to be incorporated such as, for example, oblateness

corrections for the Kepler orbits.

Keplerian Orbits

Under the assumption of a spherical earth with no atmosphere,

the solution for the coasting arcs of the vehicle becomes simply the

solution to the classical two-body problem. The governing equation

of motion is given by [22)

- . . . . . . . . . . ., - . . '-'' ' . . ' . 'v 2 " . - " - ... ' y ' .. . '' ." T . .
' . 

' . . ' o:
for;,.
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F+ 0 (2•.1)
3r

where r the position vector from the center of the earth to the

vehicle and = GMe, the mass constant associated with the earth. Un-

fortunately, there is no closed-form solution to eq. (2.1) which yields

F(t). However, by transforming both the independent and dependent

variables a solution of a sort is possible. Typically the independent

variable is transformed from time to an angle variable. The nature of

the problem at hand leads one to consider the central angle or change

in true anomaly as a candidate for the independent variable. The true

anomaly itself is not a particularly good candidate because for

circular orbits it is undefined. However, we resort to the true anomaly

to recover an expression for time.

Trajectory Equations

By taking the cross product of r with eq. (2.1) we can extract a

constant of the motion . .

r r h const (2.2)

where h = angular momentum of the system. Equation (2.2) indicates that

the unforced motion of the satellite remains in a plane determined by

r and r which passes through the center of the earth. If we vilew the

orbit in that plane, the position vector moves from one positi.on

through an angle to another position. This angle is designated as the

change in the true anomaly, that i"-

n= V (2.3)

i. ..... .. './ . , ,

".- ,- .-;i-'- i"i--)-."j -. "- '-) -"2-' -. "., i-"-"i.<--,'- ".- -.- ..- '.''.'','"". '. "'." , " " ' " " "- '-" '-'.. .'. " ,".".:"."-,;.a->i',".'r,
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where n : change in true anomaly

Vo = true anomaly of epoch ,

= current true anomaly

As indicated previously, since the true anomaly is measured from the '

position in the orbit closest to the earth's center (perigee) it is

not well-defined for circular orbits. As a result, it is useful to

use the change in true anomaly as the independent variable. The

angular momentum constant can then be used to eliminate time from the

problem in favor of the change in true anomaly. The magnitude of h is

easily determined using plane polar coordinates to be

h h 2 dn (2.4)
IhI h :r dt

Equation (2.4) can be used to eliminate time by noting that

dO _ h d-) (2.5) r
dt r2 dn,r

Substituting eq. (2.5) into the radial component of eq. (2.1) and in

addition making the dependent variable transformation

(2.6)

leads directly to the differential equation

u" + u= u (2.7)

h

where ( ) means differentiation with respect to n. The solution to

eq. (2.7) is given by

u(n) + [U(o) ] cosn + u'(o) sinn (2.8)
h h

." .w .i . . . . . . .
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Alternatively eq. (2.8) can be written as

u(n) J--[1 + e cos (n + (2.9)...". 2  
.0-.=

By comparing eqs. (2.8) and (2.9) we can obtain the constants which

appear in eq. (2.8) in terms of the initial true anomaly. (Note that -""A

this step is not necessary but only identifies the constants in eq.

(2.8) with those associated with the classical results.) The initial

conditions relate to the true anomaly as follows: --

u(o) - e cos (2.10)

h h

u'(o) =- .e sin vO  (2.11)
h0

Furthermore, the true anomaly could be determined from

Tan vo -u'(o) (2.12)
u(o) - /h

and the eccentricity, e, from

2 h2

2 (/h2)2  (2.13)

If the initial position and velocity are known, the constants required

for eq. (2.8) can be determined with the help of eq. (2.5) to be

U(o) r2  r' d " (2.14)

u'(o) = - = (aT ( ) -- - h-.F;; (ro o) 2.4

*e ,.., *

-a a.-
" - , , - -~~ -- , , - - " z . .r -F. - , . - . - -- -. . . . " -r w 

-  
" , , ,-0- - - o .0- - y ?' ,. -'.w " '''-''' , .. .. -,T. <. ',.r" ".:":..,,..L.,r', r.- _- .-,.-1, . ,, .-.. . . ',. '. '_;, , ', '; , 0.
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The problem is still not complete since eq. (2.8) establishes

only the magnitude of F and not its direction in space. To address

the problem of determining the direction of the position vector we can

track the behavior of a unit vector along the position vector. Such

a vector designated as ris defined by

i

r (2.15)
r

It is easily shown that

r'= x (2.16)

where

h =h/h.

It follows that

. .. =

The solution to eq. (2.17) is

ern) 0 cosn + s einr e n(2.18

where

;0r /r
0 0

(2.19)

=0 h/h r

If the initial position, 0 and velocity V 0 are given, along with

the change in true anomaly, the new position and velocity can be

determined as follows: Z%

Given: 0  V 0 n

wh ere ---.
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Find: 1. h x

2. uo / "r

00
2. u'(o) 5 Fr0

* - *.. -,

0

4.~ oo rr0  %- ,p

5. uo = h/ 0 x"

6. u(n) . + [u(o) cosn + u'(o) slin (2.20)
h h

7. u'(n) =-[u(o) - ]sinn + ul(o) cosn
hy

8. ;(n) 0 cosrn + r; sinn

o o o,

9. P'(n) =- sini + COST)0 0

,p- .

10. Fo  ro.-";:

. 5. ro V =/h x ;o u.-

A short discussion of eq. (2.20) is in order. By using the

change in true anomaly as the independent variable, straightforward

solutions are available for finding the final position and velocity

given the initial position and velocity. More important, however, is

the fact that the solutions do not use the classical orbital elements

in any manner and hence are not subject to any singularities which

can occur when these elements are used. In addition the results are

independent of the type of orbit encountered and are valid for

th-atta hpouin ontus h lsia ria lmns

inaymneradhnear o ujett n inuaiis hc :
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. elliptic, parabolic, and hyperbolic orbits and hence the equations can
I

be considered universal equations.

Time Equations ?,

Unfortunately reintroducing time into the problem is not quite as

straightforward and leads to some complications. Although there is a --

universal formulation for determining time in terms of the change in

true anomaly [20], there are still some unanswered questions which

make it unreliable for coupling with an optimization code. Consequently

for now we must resort to classical time calculations in terms of the

true anomaly. Further it should be noted that there is a different

calculation for each type of orbit. To separate these out it is

necessary to determine the two orbital elements a, semi-major axis

and e, the eccentricity. In addition, one needs to know the initial

true anomaly and the change in true anomaly. Once this information

is established, the time calculations are as follows:

Elliptic Orbits [22,23,24]

1. Examine the change in true anomaly to determine the number of

orbits required and subtract those out. p.:

2. Determine the final true anomaly.

3. Determine the eccentric anomaly at the initial and final point

from

. n v

Tan E. = i = 1,2 (2.21)e + cos vi

4. Determine the time of flight from perigee to initial and final

true anomaly from 0-.4,



t. tp (E. - e sin E.)/n i =1,2 (2.22)

where

n-

a

a =semi-major axis

5. Take the o fference in the times determined in (4) and add on an

orbit period for each additional orbit established in (1).

TO=(2 - t) - (ti - t )+NP(2.23)p

where N =number of orbits

*P 2 
1T =period of orbit.

Parabolic Orbits [22,23,24]

1. Compute time from perigee to beginning and final location directly

-* from

- tp, (Tan + Tan3  /~ i 1,2 (2.24)

wherei

and p =h 2
1 /U orbit parameter

2. TOF =(t 2  ~ ( t~ (2.25)

Hyperbolic Orbits

.4 1. Compute time perigee to beginning and final location directly

from



W h I iJ Tj .° - - -.... ' --

_' • 4. .° "

2 v i..

ee 2 - 17 sin vi  1 +/ Tan,'.~~~~ t i - p n e""

: 1 + e cos V n..
5. 1 -. eii+ Tan -

i 1,2 (2.26)

2. TOF = (t2 - tp) - (tI - tp) (2.27) .
p 1 

.
Conventions and Non-Dimensionalization

The time-of-flight relations above require the two orbital

elements (a,e) and the initial and final true anomaly. In most cases

these calculations are straightforward and no problems are encountered.

However, one should note that for circular orbits the true anomaly is

not defined. A standard default for definition of the true anomaly *

for a position on a circular orbit has been defined as the angle from

the ascending node line to the position vector. If the inclination ,-.

of the orbit is zero, the true anomaly is measured from the inertial x

axis to the position vector in the plane of the equator. It should be

pointed out that to date no problems have been encountered with this

convention and none are anticipated. However, it is a weakness in

the formulation and should be noted.

All calculations for the position, velocity, and time are per-

formed using non-dimensional units. These are obtained by defining

a reference circular orbit and dividing lengths by the reference orbit

radius and velocities by the reference orbit velocity. A unit of

time, therefore, becomes the time it takes to travel through one

radian in the reference orbit. This procedure for non-dimenslonaliza-

tion causes all the equations to appear as if they were the dimensional

°>
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equations with the gravitational constant li=I. Typically the reference

orbit is at the radius of the earth's surface.

Rotating Earth

While waiting on the launch pad the interceptor performs an

inertial motion due to Earth rotation. This is calculated by first

converting the initial inertial position from Cartesian to polar

representation (declination and right ascension). The right ascension

is altered by adding to it the (prescribed) angular change; the ."

result is then transformed back to Cartesian co-ordinates. To preserve

similarity with the treatment of Keplerian arcs the change in right

ascension is prescribed and the time is calculated by dividing by "

the (fixed) Earth angular rate.

Velocity Impulse

The code keeps track of the inertial position and velocity, -

represented in Cartesian coordinates, at both ends of each coasting ,.

arc. At the junctions of these arcs, impulsive burns are modelled

as discontinuities in these quantities. In the current version only

the velocity vector suffers a discontinuity; the position is the same

before and after an impulse. Note that other approximations which

account for some effects of finite burn-time (e.g., Robbins'

generalized impulses) could be handled in the present structure of

the code.

The simplest impulse is described by three parameters which

represent the velocity impulse in Cartesian co-ordinates. Early in

the present research it was thought that certain special maneuvers
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might also be of interest so that two additional impulse-types are

possible. One is a two-parameter impulse to allow a change in

velocity, in the current orbit plane. The third impulse is a one-

parameter affair where a component of velocity is added to cause a

pure plane change. These additional impulse-types were not used

extensively in the research.

The Clohessy-Wiltshire (CW) Equations

The CW equations describe the motion of a particle (satellite)

in space relative to a coordinate system which moves as if it were

fixed to a particle moving in a circular orbit. Consequently if the

original orbit of the target were circular, the target position would

always be at the origin of the CW coordinate system. If the coordinate

system is oriented as shown in Figure 2.1, the relative motion of a

particle moving in the same force field as the reference circular

orbit is described by the CW equations given by

R - -- o

+ 2A - 3w 2y = 0 (2.28)

+ w2z =0

where w = angular rate of axes system which moves in the reference

circular orbit

By a suitable selection of a time scale, the above set of equations

can be simplified and non-dimensionalized. In particular define a

non-dimensionalized time (really an angle) as = wt. Then the above

equations reduce to
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x- 2y' =0

y"+ 2x' - 3y = 0 (2.29)

Z" + Z = 0 ..

where d

and x, y and z can be scaled by any arbitrary length. Typically the

reference orbit radius is used although any convenient length is

appropriate. It is this property that allows results obtained from

the CW equations to be scaled up or down directly [25].

A solution to the above equations is given by

x 1  6(T - sint) 4sinT - 3T 2(1- cosT)' xo
y 0

0 (4 - 3cosT) -2(1 -cosT) sinT yoY0

x 0 6(l -COST) (4cOST -3) 2sinT x

y 0 3sinT -2sinT COST YO Yo .

(2.30)

and p-.

(z 1 FCOST sinT ( zo
~= J0(2.31)

z' -sinT cosT zo

where xO  x(o), xO' x'(o), etc.

The solution exhibited by eq. (2.30) can be utilized in several

ways. Of particular interest are the solutions to initial-condition

problems, and to boundary-value problems. For the initial-condition

problem, eq. (2.30) can be used in its present form to determine the

position and velocity at any non-dimensional time, T, given the initial

position and velocity, the so-called Kepler problem. On the other

%-
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hand if one is given two positions and the time-of-flight between

them, it would be useful to be able to determine the initial velocity

required to carry out this intercept maneuver, the so-called Lambert -'---;

(or Gauss) problem. For this boundary value problem it is necessary

to partially invert eq. (2.30) in order to obtain the following

result: Ix
XO 2sinT 2(1-cost) -sint 14(l-cosi)-6trsinTJ y

(1-cosT) 4sint-3T -2(1-cosT) 3Tcost-4sinT x

(2.32)

where .. -

A = 8( - CosT) -3TsinT

The computer code for the evasive-maneuvering sequences uses

the CW equations to generate the coasting arcs. As in the interceptor K
model, these arcs are joined by velocity impulses which allow dis- 'a

continuities in velocity only. Since the CW equations can be solved

analytically in terms of time, time rather than true anomaly is used

as the independent variable for the evasive-maneuver calculations. --.

Consequently the awkward time equations are unnecessary. *

t., .- a.
,:.:<.

.e~ ; 7 * ~ ~~ % ~ *~* .-.- -'' -'
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3. INTERCEPT-MANEUVER-SEQUENCE TUDY

The class of problems studied here involve efficient maneuver

sequences to intercept a non-maneuvering target in low-Earth orbit. .,' '.

In all of the present studies the target is in a circular orbit at

uO0 kn, inclined at 65'. This is typical of targets used in Soviet

ASAT-system trials. The period of the target's orbit is about 97

minutes (see Figure 3.1).

The interceptor is to be launched from a location at 450 38' N.

latitude (Tyuratam). It is clear that the intercept problem depends

on many parameters including the target's orbital elements and the

interceptor's launch latitude. Somewhat more subtiy the problem also

depends on the relative 'phasing' between the target's orbital motion

and the interceptor's (inertial) motion while on the launch pad. We

next present a way to quantify this phasing. It should be noted, how-

ever, that since the periods of the two motions need not be commensurate

the 'phase' will change from day to day.

We define epoch to be the time when the launch point is one :.

orbital period (of the target) west of the target's orbital plane.

Thus, one period after epoch the launch point will be in the plane of I.7
the target's orbit (specifically where the target would be ascending

or moving North). For convenience we measure the target's true

anomaly from this point of intersection between the orbit plane and

the launch latitude. In these terms we define phase anqle to be the

target's true anomaly at epoch. Note that one orbital period after

epoch the target will return to the same true anomaly and the launch
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point will be at the location of zero true anomaly (see Figure 3.1).

As noted above the phase angle may be different at subsequent

orbit crossings by the launch point. In an operational setting it

is expected that the exigency would rule out the possibility of

waiting for a subsequent orbit crossing.

General Formulation

The scenario assumed is as follows: Starting from epoch the

interceptor may wait on the launch pad for some time. Following the

initial impulse the interceptor coasts along an ascent ellipse. At

some point a second impulse is applied and this is followed by

another coast. A third impulse is possible and the subsequent coast

must lead to intercept. At this point a fourth burn may be needed to

produce velocity match, possibly within a given tolerance.

Such a maneuver sequence is specified by thirteen parameters

as enumerated in Table 3.1. Since the target does not maneuver, its

location at intercept depends on a single parameter, namely, the

coast angle, which is a fourteenth parameter. The components of the

fourth burn can be computed from the condition of the required

velocity match between the two vehicles. Each impulse adds a total

of four parameters, so that a three-burn intercept sequence requires

ten parameters and a two-burn sequence requires six.

It is clear that an 'arbitrary' choice of these fourteen

parameters would not produce a final position of the interceptor

that matched the target. Indeed, the times at which the endpoints

were reached would likely not match either. Thus, we must add four

........................ -. ...- ,
. ..........



20

important constraints, the first four in Table 3.2. If these constraints

are satisfied then the target is indeed intercepted. The additional

nine constraints are generally inequalities and will be discussed
l ater. "

Nonlinear Programing

Thus far we have described many of the ingredients of an optimal-

intercept problem. The parameters needed to specify the maneuver

have been listed and the constraints have been enumerated. As an

index of performance the sum of the impulse magnitudes is a

measure of fuel-required. Thus, for minimum-fuel intercept we take

4
f(x) IA I

and consider the nonlinear-programming problem: find x to minimize

f subject to the constraint

g>O .

The first four constraints are equalities while the last nine

are inequalities. Of these, certain constraints (g8, g9, g,, and gl3)

are needed to insure that the interceptor's path does not strike the

Earth. Other constraints (g6, g7, glo and g12) are needed to prevent

the solution algorithm from choosing a negative coast angle (and

hence a negative time-of-flight).

The algorithm used to solve this problem is a modern quasi-

Newton scheme with important features for adapting to difficult

problems. It is described in Appendix A.

S . ..
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Minimum-Propellant Intercept-Maneuver Sequences

The first problem studied is that of minimum-propellant, time-

open intercept. For each phase angle one seeks an intercept-maneuver

sequence which uses the least propellant. The total time-of-flight

inequality constraint g5 (see Table 3.2) was specified as 500 minutes,

which is sufficiently large that time is effectively not constrained.

Fig. 3.2 displays the total-fuel cost as a function of phase angle. In

these calculations it was required that the two vehicles rendezvous,

that is the last burn had to produce a velocity for the interceptor

equal to that of the target.

Some of the salient features of these optimal-maneuver sequences

are shown in Figs. 3.2-3.5. From Fig. 3.3 it is seen that for phase-

angles in the range [-170', -200] the launch is timed to occur with

the target about 20 past overhead. To accomplish this with large

negative phase angle the launch must be delayed well beyond the point

where the launch site passes through the target's orbital plane. For

example, with a phase-angle at -1500 the launch occurs with the

launch-site about 100 East (past the orbital plane of the target).

The impulse trade-off is such that it's preferable to 'pay' for the

out-of-plane condition at launch in order to obtain favorable target

geometry. For phases in this range (i.e. [-1700, -200]) the inter-

cepts are nominally three-burn affairs; however, the third burn (at

rendezvous) is very small (JA V31 .5 ft/sec). After the second

burn the interceptor is in nearly the same orbit as the target. The

optimization algorithm chooses to have the interceptor fly in a nearly

station-keeping mode with the very small third-burn timed to occur
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when the vehicle velocities match most closely. In effect, then, the

fuel-optimal maneuver sequence is a direct-ascent intercept. For the

phase-angle at -150' the intercept is accomplished about 20 minutes

after launch.

For phase angles in the range [600, 1900] the launch occurs

with the target about 70° past overhead. To achieve this target

geometry the launch is 'early'; that is, it occurs before the launch

site reaches the target's orbital plane [West]. For example, with a

phase-angle of 900 the launch occurs with the site about 10 West of

the orbital plane and the target 690 past overhead. This first burn

is at nearly zero path-angle and results in a near-circular orbit at

the Earth's surface. The second burn (IA V21 600 ft/sec) puts the

interceptor in an orbit that is (nearly) co-planar with the target and

with apogee altitude at 600 km. The minimum-radius constraint is

active on the "ascent" ellipse and on the orbit segment leading to

intercept. The third-burn is a substantial (IA V31 570 ft/sec)

speed-up to match velocity of the target which is 'overtaking' the

interceptor. In this family the intercepts are rather long affairs;

e.g., the 900 phase case takes about 198 minutes from launch, and about

289 minutes from epoch.

For some intermediate range of phase-angles one finds two

distinct (local) minimum-fuel intercept sequences. These sequences

differ principally in the second and third burns. For example, at ,-

150 phase-angle both sequences initiate launch when the site is at

the target's orbit plane (and hence the target is 150 past overhead).

In both cases the ascent ellipse is co-planar with the target and has

.

1.~*~'.'.~ * -. -- .
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an apogee near 600 km. In one sequence the second burn (JA V21  475

ft/sec) occurs near apogee on the ascent ellipse and it effectively

adjusts the interceptor's period so that intercept will occur one

orbit later. The third burn at about 85 ft/sec is a speed-up maneuver

to match velocity with the overtaking target.

The second sequence also applies the second burn (IA V2 1 525

ft/sec) at apogee of the ascent ellipse. Since the second burn is

larger than before, the interceptor's period is now closer to the

target's so that the intercept takes three orbits, instead of one.

The final catch-up burn is now reduced to 37 ft/sec. Note that the

sum of the two final burns is nearly the same in both sequences. The

time to intercept is, however, quite different (140 min. vs. 330 min.).

One expects that there is another sequence 'between' these in which

the second burn is sufficient to achieve intercept in two revolutions.

Indeed, there are likely to be other local minima with four-, five-,

etc. revolution intermediate arcs.

At a phase of 450 another maneuver-sequence family appears with

the same character as the 900 phase case (i.e., "ascent" to a

circular orbit at one Earth-radius, a second burn to achieve intercept

at apogee and a third burn to rendezvous). The launch timing is dif-

ferent from the [60*, 1900] phase family in that the launch site is

nearly in the orbit plane.

The launch doctrine that emerges from this study can be described

with the help of Fig. 3.5. The heavy curve is a cross-plot of launch

longitude (from the target's orbit plane) and target true-anomaly

(from overhead) at launch. Also shown are lines of constant phase.
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Since the target's orbital period is about 97 min. while the Earth's

rotational period is 24 hrs these lines have a slope of about 14.8.

Given any initial launch-site longitude and target true-anomaly one

moves along the constant-phase line through the point until it inter-

sects the cross-plot.

The last part of this initial study is a first look at the

effects of a time-constraint. Operationally one expects that early

intercept may be of value. Indeed, with a given booster configuration',J-. ._:.-'

there is little virtue in saving fuel at all. Thus, one is led to

consider how 'quickly' intercept can be accomplished for a given

total-impulse budget. This may be done by introducing a time

constraint (i.e. reduce the total time specification in constraint

.g5). Note that only total time is considered (i.e. 'wait' time on

Earth is included in the time calculation). It would also be worth-

while to consider constraining the time from launch to intercept.

This, in effect, amounts to the warning time and makes evasion, if

any, more difficult. This version is considered in a later section.

C. I
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The phase-angle parameter, defined and used above, is very

valuable in understanding the structure of minimum-propellant inter-

cept maneuver sequences, when the final time is free. Perhaps of

equal importance, at least in an operational setting, is a time

constraint.

Since there is a genuinely two-parameter family of problems

(phase-angle and elapsed-time) it will only be possible to present

representative results. To this end consider the 900 phase-angle case.

The minimum-propellant time-open maneuver sequence was described above.

It consists of a launch-burn into a circular orbit at the Earth's

surface; a second-burn to a Hohmann-like intercept ellipse with apogee

at the target's altitude and, a rendezvous burn after one and one-half

revolutions in the intercept ellipse. Intercept occurs about 290

minutes after epoch and requires a total delta-vee of 26,500 ft/sec.

If one now restricts the allotted time the propellant-cost will, as

expected, increase. With a maximum time of 275 min. an additional

155 ft/sec delta-vee is required, while a 265 min. intercept requires

625 ft/sec more than the time-open case.

Further restricting the time produces a result that, at first,

seems somewhat surprising. With a time allotment of about 250 min.

one finds a maneuver-sequence which requires only an additional 145

ft/sec. While this seems puzzling, if one examines the maneuver

sequence, it is seen to be quite different from that of the time-open

case. The initial orbit has an eccentricity of .06 and a semi-major

axis of .96 Re; it is not a surface circular orbit. At a point past

apogee on the ascent ellipse a second burn is imparted. This results

,.-..
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in an orbit with perigee at zero altitude and apogee at the target's

altitude. After about one and one-half revolutions, at apogee in

this intercept-orbit, a third (rendezvous) burn is imposed.

If one continues to restrict the time allotted below 250 min.

the minimum-propellant intercept sequences remain of the type just

described until the time reaches about 200 min. At this point a third

family emerges which is similar to that of the time-open case, except

that the intercept ellipse is followed for only one-half an orbit,

not one and one-half orbits. This is reasonable since these intercepts

occur in the (target's) orbit prior to those of the original family.

When the time allotment is restricted to 150 min. a fourth

family is found. These orbits are similar to those in the second

family except that the intercept ellipse is traversed for only one-

half an orbit, in contrast to the second family of orbits which

employed about one and one-half revolutions. ' :

Finally, when time-to-intercept is restricted to 90 min. the

intercept sequence becomes a two-burn affair. Initially the first

burn results in an ascent ellipse with apogee at the target's

altitude. The second burn produces the required velocity match.

The results of this fuel-time trade-off are shown in Fig. 3.6.

The solid curves depict performance along each of the five sub-families

described in the preceding. Perhaps the most significant result is

that a small increase in propellant allocation can greatly reduce the

time-to-intercept. Specifically, an additional 675 ft/sec of delta-

vee reduces the time from about 290 min. to 90 min. Thus, it would

seem that the Soviet ASAT is fundamentally capable of much more

rapid engagements than the observed tests would indicate.

'F:
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Mimicking Soviet ASATs

The intercept maneuver sequences that emerged from the above
p

formulation are quite different from the procedures employed by the

Soviets [9]. The observed pattern of the test shots suggests that
,. .-

they were constrained, for various reasons including tracking and kill-

assessment considerations. Thus, we are led to introduce additional

"operational" constraints into our problem.

It has been observed that Soviet ASAT intercepts occur while the L
target is passing near Moscow. To implement such a constraint one

looks for a time (from epoch) when the target is closest to Moscow.

In general one expects two close approaches; one with the target

passing East of Moscow and a second, approximately one period later, Lr
with the target West of Moscow.

In order to investigate these close approaches a small FORTRAI_

code was written. The launch-site is located at epoch one period Vost

of the orbit plane and a phase of the target thus is specified. True

anomaly change of the target is varied on [0,2T] and the minimum is

sought for the Moscow-target separation distance. The interval

[?n,47] is then searched and so on. One of these produces a close

approach just East of Moscow and the next produces one to the West.

Since the target's orbit is circular, the time-of-flight is simply

related to the target's true anomaly change. The results are shown in

Fig. 3.7 as a function of phase angle. Note that for each phase there

are two solutions: East and West.

One might select from the two possible intercept points the one

that is closer to Moscow for test purposes. Miss distances are shown

as a function of phase in Fig. 3.8. The discontinuities are a

- N. •
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consequence of the fact that, depending on the phase, the closest

approach may occur on the 2nd, 3rd or 4th pass near Moscow. In an

operational setting the earlier of the two close approaches might be

favored.

The candidate family is described by the lower bound from

Fig. 3.d. Note that for phases in the range 1350 < < 300 the

intercept point is East of Moscow, while other phases produce inter-

cept to the West. The "fold" at 3600 is smooth, but there is a switch

between the East-West families at 3000 phase. The switch at 1350

phase angle is more a matter of semantics. At this phase the inter-

cept occurs directly North of Moscow; slight perturbations of phase

produce intercepts to the East or West.

This family has several deficiencies. Most significantly, inter-

cepts West of Moscow take place about one orbital period (% 100 min)

after the previous Easterly intercept would have. Secondly, since

Moscow is about 260 West and 100 North of Tyuratam, it arrives at the

target's orbit plane about 140 minutes after Tyuratam. This time

must be made up by a costly trade-off between a delayed launch

(Tyuratam East of the orbit plane) and a longer-duration intercept

orbit (higher energy). For these reasons it was decided for purposes

of the present calculations to intercept the target on its Easterly

pass closest to Moscow (i.e., on the next pass the target would be

West of Moscow). Note that this will not necessarily provide the

(global) minimum-fuel intercept. Indeed, results show that for

certain phases intercept on a prior pass (i.e., well East of Moscow)

require less fuel.
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In addition to the intercept point specification several new

constraints are added exploratively to force the maneuver-sequence to

be similar to that of observed Soviet ASAT shots. It has been

observed that the Soviet sequences produce final intercept orbits

that are nearly co-planar with the target's orbit. To enforce this it

is required that the second burn occur at the intersection of the

ascent ellipse with target's orbit plane and that the 2nd burn be

such as to produce a new velocity vector that lies in that plane.

Since both the position vector and the velocity vector (after the 2nd

burn) lie in this plane it will also be the interceptor's orbital

plane. Note that the second burn is not required to be a pure plane -

change; some energy change is permitted. The two new constraints

are

gp <hT, ?l(t 3 )> : 0
and,-.----

q= <h T  I (t3+)> 0

In these equations, as in Chapter 2, hT is the angular momentum of

the target's orbit, Fi(t3) is interceptor's position at t3, the end

of the ascent orbit, and Vi(t 3 ) is the interceptor's velocity after

the second impulse has been applied. Constraint gp requires that the

second burn occur in the target's orbit, plane while gq requires that

the subsequent orbit be co-planar with the target.

A family of minimum-propellant maneuver-sequences with phase- .

angle as a parameter was studied numerically. Some significant ,

features of the family are presented in Table 3-3. For this study

. . . . . ."._. .
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the final burn (rendezvous) was required to match the relative velocity

within a specified tolerance. In each case the velocity match was

sufficiently close that the fourth burn was omitted. Indeed, for most

phase-angles (30* exception) the third burn (catch-up) was virtually

absent. Thus, the second burn, which was required to make the

interceptor's orbit co-planar with that of the target, generally in-

cluded the necessary in-plane speed change to effect intercept.

In all cases the flight-time (from launch to intercept) is about

90 min. The interceptor remains on the Earth's surface until the

target is about 250 past the intersection of its orbit plane with the

parallel of latitude through the launch site. The interceptor goes

about one-fourth of a revolution (to near apogee) in an ascent ellipse.

The second burn provides the required plane-change and puts the inter-
ceptor in an orbit with perigee at one Earth radius and apogee beyond

the target's altitude. The interceptor travels about 3000 in this

orbit. A third burn occurs on this segment but is of such small magni-

tude that the orbit is virtually unchanged. Intercept occurs near

(but not quite at) apogee on this orbit with the target overtaking the

interceptor. The speed difference is typically 500 ft/sec, well within

the allowed value.-

The relatively long (300° ) coast on the intercept ellipse warrants

further testing to validate the optimality of these maneuver-sequences.

A test based on primer-vector theory (see, for example [8]) would be an

attractive addition to the current analysis.

In addition to the basic family, several problems were investi-

gated to gain an indication of the effects of certain specific

-x:
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features. For example, the minimum-radius constraint was specified

as one Earth-radius in all cases discussed above. The phase-angle-

equals-330° case of Table 3.3 was re-run with the minimum radius value

of 1.02 Earth radii. The results are displayed in the next-to-last

line of Table 3.3. It can be seen that the maneuver-sequence is nearly

the same as before, except that the higher minimum radius results in

an increase of 9) ft/sec in the total propellant requirement.

A second special problem was formulated to assess the impact of

the plane-change requirement. Specifically, the phase-angle-equals-

1200 problem was re-run with the constraints gp and gq (defined above)

omitted. These results are shown in the last line of Table 3.3. The

maneuver-sequence is again quite similar to the constrained 1200

phase-angle case (5th line in Table 3.3). The less constrained

maneuver is slightly more fuel-efficient; it requires about 160 ft/sec

less total impulse. The third impulse, which is not shown in the

table, is 530 ft/sec. This is much larger than the constrained cases

which typically have third impulses of several ft/sec.

Two more attack families were generated in further attempts to

approach realism. For one of these the minimum-fuel index was retained

but the first-burn magnitude was specified. The rationale for this is

that an existing space booster (SL-ll) is employed for launch without

provisions for shut-down and re-light. A first-burn delta-vee of 1.03

was assumed as well as a velocity-match tolerance of 1000 ft/sec. at

intercept. Coplanar flight following the second burn was required.

The results are shown in Table 3.4. The maneuver sequences are

typically three-burn; for a range of phase angles the intercept burn

. -, .. • ..- , . -. ., ... -. ,,.-. -...- -. - . .- -,. - ...-.- ,... - -., -. **-.* -. - .* . . . ... ,,, - ,, ,
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fades to zero also, resulting in two-burn sequences.

Fragmentary results for a minimum-time-of-flight family are

given in Table 3.5. Alterations were 1.03 delta-vee first burn and

1.15 delta-vee total. Three of the four maneuver sequences calcu- '-,

lated exhibit four burns; in one the intercept-burn is missing.

These generally resemble the observed Soviet ASAT system shots. It

should be borne in mind that there is considerable arbitrariness in

the allocations assumed. A more thorough study and comparison with

flight data is of future interest.

Summary

Perhaps the most significant insight that can be gained from

the intercept-maneuver-sequence study is that the current Soviet ASAT

approach has the potential to be considerably more effective than the

tests to date would indicate. That is, the documented Soviet tests

have employed maneuver sequences that use more propellant and allow

more warning time than the "optimal" sequences (in the sense and with

the constraints employed here).

While we have provided no explanation for the observed Soviet

intercept strategy one may hypothesize that the current Soviet ASAT

could be made considerably more effective by:

1) better communication for transmittal of commands

2) more flexible software and hardware to generate and '*

implement burn commands

3) improved tracking and kill-assessment capabilities

•,%4
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These are mostly external to the fundamental interceptor design and

likely represent planned improvements in the normal course of develop-

ment. In systems-optimization terms they represent relaxation of

constraints. Other obvious opportunities for improvement are the

use of higher-performance boosters and improved on-board sensors for

target acquisition which would permit higher closing rates.

-. .,.
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Table3.

Optimization Parameters

Number Description

Wait-angle on Earth's surface

2,3,4 Components of first velocity impulse

5 Coast-angle along ascent orbit

6,7,8 Components at second velocity impulse

9Coast angle along Kepler orbit *
10,11,12 Components at third velocity impulse

13 Coast angle along Kepler orbit

14 Target's coast angle along its Kepler orbit
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Table 3.2

Optimization Constraints

Number Descri ption

1-3 Difference of position components of target and inter-
ceptor

Difference intotal time-of-flight of target and inter-
ceptor

IL
5 Difference between input time-of-flight and target's tof

6 Interceptor's wait time on Earth

7 Difference between coast angle on ascent ellipse and
input minimum coast angle C-A

8 Difference between coast angle where ascent ellipse re-
encounters the Earth and the actual coast angle

9 Difference between path angle at launch and input
minimum path-angle

10 Difference between coast angle on third orbit and
minimum coast

11 Difference between least radius on third orbit and
input minimum radius

12 Difference between coast angle on fourth orbit and
minimum coast

13 Difference between least radius on fourth orbit and
input minimum radius

.
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4. EVASIVE MANEUVERING

A satellite in an orbit which permits it to carry out some

strategic function would best have the capability of maneuvering away

from its location to avoid threats. In addition, it would be

desirable to be able to return to the same orbit or, for some missions,

to return to the same position in orbit the satellite would have

L
occupied if no evasive maneuver had taken place, that is, return-on-

station. In order to extend the lifetimes of such satellites, these

evasive maneuvers should consume minimum fuel. This section

evaluates various evasive-maneuvering sequences as to their effective-

ness in avoiding the threat, returning on orbit or on station, and

in minimizing fuel-consumption.

In order to complete a successful evasion, the closest approach

between the pursuer and evader must exceed some minimum distance

dictated by lock-on capability of the ASAT search sensors. In

general this minimum miss distance will be small compared to the

nominal orbit radius. Furthermore studies of typical interceptor

ascent trajectories show that the final orbit segment which approaches

the target is generally in-plane or nearly in-plane with the target

orbit. These observations indicate that the linearized analysis of

Clohessy and Wiltshire [1] is adequate for a preliminary investigation.

In addition the simplified analysis will give a better insight to
,.. '

the problem.

The solution to the CW equations was presented earlier in the

form of position and velocity of the satellite as a function of time.

% Z.
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Because of the simplicity of this solution certain evasive maneuvering

results can be obtained analytically. For example the direction of

thrust to maximize the distance from the "on-station" location for a

given impulse (delta-V) can be determined analytically as a function

of evasion (or warning) time. On the other hand maneuver sequences

such as an evasion and return-to-orbit or return-on-station are too

complex to handle in an analytic manner. For these sequences the

analytic trajectory solutions of the CW equations are used in con-

junction with the optimization code to establish minimum-fuel

maneuvering sequences. In the following sections various optimum

maneuver sequences are presented.

Before examining these maneuver sequences in more detail we

should note that the CW solutions given by eqs. (2.30) and (2.31)

reveal that the in-plane motion is uncoupled from the out-of-plane

motion. Further, the out-of-plane motion is oscillatory in nature

with respect to the orbital plane. Hence any evasive maneuver which

occurs over a substantial amount of time would not include an out-of-

plane component of motion since such efforts would eventually be

wasted as the vehicle returns to the plane. These observations were

verified in Reference 3. Consequently the remaining discussion will

be restricted to in-plane maneuvers only, which are governed by eq.

(2.30).

Equations (2.30) and (2.32) allow one to gain considerable in-

sight into the problem because of their simplicity. Further, some

manipulation of these equations allows certain results to be obtained

analytically. For actually describing trajectories in space, these

.a...
Z• N' , ,
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equations are limited in accuracy depending on the distance from the

origin and length of time considered. However, for the purposes of'

this study (comparisons, trends, etc., as opposed to detail trajectory -

calculations) these equations can be used for quite long time perioo -

of interest. The results presented can be scaled up or down directly.

Both distances and velocities scale the same, doubling the velocity

will double the corresponding size of the maneuver.
. . -.- °,

Evasive Maneuvering Away from Origin

There are several strategies which may serve as bases for evasive

maneuvering. The most elementary strategy is that of moving as far

from the starting point (the origin) in a given time for a given amount

of fuel (or delta-V). Here it is assumed that the interceptor is

attempting to get to a specific point in space at a specific time

(intercept time). The maneuver of interest maximizes the distance from-_

that point at a given time (evasion or warning time). One should note -

that the maneuver only considers the position of the threat at the

intercept time and not the trajectory taken to arrive at that position.

Consequently it is possible that during (or after) the approach the

interceptor and tarnet may be closer than the distance calculated at

intercept time [3]. This aspect of the problem is discussed in a ..

later section.

Of additional interest is the maneuvering the evader does after

the threat is past. Typically, he can remain in the new orbit into I-.

which the evasive maneuver placed him, he can return to the original

orbit, or he can return to the original orbit at the same point he
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would have occupied if no evasion was necessary (i.e., return on

station). Obviously other scenarios are possible, but these are the

ones which seem to have the most utility and are considered herein.

Maximum Distance from the Origin

The maneuver to be examined in this section is that of maximizing

the distance from the origin at a given time for a specified amount

of fuel or delta-V. It is useful to represent the initial velocity

required for the maneuver in the form

"" e~X0 = AVO COSY".."
X AV0 cosy (4.1)

ya = AVo siny

where AVo  initial impulse required, assumed to be proportional to

the fuel required

y = thrust angle relative to the x axis

If xO and yo are zero, corresponding to starting at the origin, and

eq. (4.1) is substituted into eq. (2.30), the square of the distance

from the origin can be shown to be

2 R 2
R= AV 0[A cos2y + B sinycosy + C sin 2y + D] (4.2)

where A = (4 sinT - 3T)2

B = 12 (1 - cosT)[sinT - T]

C = sin2T

D = 4 (1 - cosT)
2

It is clear from eq. (4.2) that the distance from the origin

achieved is directly proportional to the AV0 applied. Furthermore

the angle at which the optimal thrust should take place is independent

.... ....
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of the magnitude of the AVo. It is easily shown that the angle for
0I

obtaining the maximum distance is given by

Tan 
2 y B

A - C V.

4 (1 - cost) (4.3)
5 sinT - 3T

Equation (4.3) gives four possible angles for thrusting, only two of

which yield maximum distance from the origin. The two angles are

those which occur nominally in the second and the fourth quadrant.

Although the distance from the origin is the same for both quadrants,

the solution which gains energy has been shown to be better when some

consideration of the threat trajectory is included [3]. Hence only

results for thrust (or impulse) directions in the second quadrant are

presented.

Equation (4.3) was evaluated for several warning or evasion times

and the results are presented in Figure 4.1. These results are

independent of orbit altitude and represent the best angle for an

4-0-initial impulse in order to achieve the maximum distance from the

origin in the specified time.

The distance achieved by the above maneuver depends directly on

the magnitude of the initial impulse (AV) as indicated by eq. (4.2).

Consequently we can select one of two methods to normalize and compare

our later results. For comparing the fuel costs of various maneuver

sequences for a specific evasion time it is useful to compare against

the fuel costs for the pure evasion maneuver which led to Figure 4.2.

In this case the distance at the specified evasion time is held

. -



52

constant at the value given in Figure 4.2. On the other hand, for

comparing fuel costs for the same maneuver sequence over various

evasion times it is useful to hold the evasion distance constant over

all evasion times. If we pick that distance as unity, the AV for this

second normalization procedure is related to that of the first by

dividing the first AV by the non-dimensional distance associated with

each evasion time given in Figure 4.2. In the following, the tables

will show results normalized using method 1 while the graphs will dis-

play results normalized by both methods.

As indicated previously Figure 4.2 shows the distance from the

origin achieved by using the evasion strategy given in Figure 4.1.

Here the initial impulse is assumed to be unity. Also shown in

dimensional units is the distance that would be achieved using this

strategy in an orbit 100 miles above the earth's surface with an

initial impulse of 1 ft/sec. The information necessary ,'or the

purposes of calculation is given as

Rref = 2.146848 x 10 ft

Vre= 25,600 ft/sec. V~ref ..

= 1.19 x 10-3 rad/sec

Evasion from Origin and Return-to-Orbit

The strategy presented in the previous section provides a I--:

maneuver which maximizes the distance from the origin for a given

amount of fuel (AV). Such a maneuver ignores the requirement that the

target vehicle may need to return to its original orbit once the "side-

step" evasion procedure has been carried out. In order to investigate
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this problem and make meaningful comparisons, it is useful to describe

the maneuver as that which uses the minimum fuel to take the target I.M

from the origin to a specified distance in a specified time and then lb.%

return to orbit.

In the CW frame of reference a return to orbit maneuver brings

the target back to the x axis only and not to the origin. At the x

axis the velocity components must be nulled. The usual number of

impulses necessary to do the maneuver is three, the evasive impulse,

the return-to-orbit impulse, and the final impulse to null the

velocity. With the distance from the origin specified at a given time,

the object is to carry out this maneuver with minimum fuel. .'

Under these restrictions one might suspect that with unrestricted

time the minimum-fuel maneuver would be to perform the evasive burn,

remain in that orbit until apogee, and return to the original orbit

using a Hohman-like transfer. That such a maneuver sequence is indeed

optimal was confirmed computationally by the optimization algorithm

and the CW model. The results of this activity are presented in Figs.

4.1, 4.3a, 4.3b, and 4.4.

Figure 4.1 compares the initial angle of thrust for this maneuver

with that required for the purely evasive maneuver. It is shown that

for all evasion times the angle required for the pure evasion is

larger by about 20 degrees than that required for the evasion and

return maneuver.

Figure 4.3a compares the initial AV and the total AV for the

"round-trip" maneuver with that required for the purely evasive

maneuver. The results indicate that the initial AV must be increased

....... . -.- -.--- :.-:- ~ e A_. - - - " L . ,: " I ! , " .. '' . . ... ...... .. .. ..
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by a small amount and that the total AV ranges from about 1.5 to 2.0

times the initial AV depending on the evasion time. The maximum value

of 2.0 occurs when the evasion time corresponds to 180 degrees of

orbit motion with the total maneuver occurring over one complete

orbit. In this case the second AV goes to zero and the vehicle simply

returns to the x axis in the rourse of moving along the initial

evasion orbit. Upon returning to the x axis it has the same velocity

as it started with which must be nulled. The initial AV for the 180

degree case is just the same as that for the purely evasive maneuver.

Hence the initial AV curve starts at the value 1 for zero wait time

and returns to the value 1 for the 180 degree case with values slightly

greater than 1 between these.

Figure 4.3b gives the same information as Figure 4.3a. However,

here the evasion distance is held constant at the value of 1 over all

evasive times.

Figure 4.4 shows how the total maneuver time varies with the

specified evasion time. All maneuvers take between three-quarters and

one full orbit to complete. The bulk of this time is taken by the

Hohman-like return orbit which requires half an orbit to complete.

The solution to the CW equations is characterized by a periodic

motion, with the same period as the reference orbit, plus a secular

drift in the x direction. Consequently a return to the x axis is

made once each orbit period. Figure 4.4 shows only the time required

for the first return to the x axis. Additional curves could be

...
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generated by adding 2k7 (k an integer > 1) to the times indicated in

Figure 4.4. A vehicle could remain in its initial evasion orbit for

several orbital periods and then initiate the return-to-orbit impulse,

or the return-to-orbit impulse could be initiated at the first apogee, ___-

but the final velocity nulling impulse could be delayed until several

orbits later. No additional cost in fuel is occasioned by these

types of maneuvers. As a result considerable flexibility in this

particular maneuver sequence is possible. -.

Several attempts were made to determi e if sequences which in-

cluded more impulses would reduce the fuel consumption further. All

formulations reduced to a three burn sequence for minimum fuel con--.

sumption.

Table 4.1 contains a summary of the results for pure evasion

from the origin and an evasion from the origin and return-to-orbit

maneuvers. -%-

Evasion from the Origin and Return-on-Station

A more sophisticated maneuver sequence than those described in

the previous sections is that in which the target makes an evasive

"side step" maneuver and then returns back to the original orbit to

the same position where it would have been had no evasive maneuver taken '..

place, i.e., it returns-on-station. Several scenarios are presented

here which accomplish this task but which in turn consume various

amounts of fuel. On the other hand various features of each strategy

are attractive from the point of view of time and mission requirements,

as well as fuel considerations. I.'
>.~ ~ ~ '~-: *~~ - **~*. -* ."
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The first strategy to be examined is that which involves only

two impulses to evade and return on station. Although it is not

particularly fuel efficient, as we shall see, it has the feature of

simplicity and is useful for purposes of comparison. If the CW equa-

tions (2.30) are examined for the case where the initial position and

flial position are at the origin, it is easily shown that such an

orbit can occur only if the component of initial velocity in the x
k

direction is zero. Furthermore the time to return to the origin for

any amount of thrust in the y direction is exactly one orbit period.

Hence the strategy is quite straightforward, thrust ninety degrees ......

from the orbital path and in one orbital period (or any number of

orbital periods) the satellite will pass through the origin. At this

point a thrust equal in magnitude to the first will null the motion

with respect to the original orbit. It is required that the distance

from the origin at a specified evasion time must be the same as those

shown in Figure 4.2 or Table 4.1 for the comparisons made in Figure

4.5a and Table 4.2, and that the distance from the origin be unity for

the comparisons made in Figure 4.5b.

It is clear from these results that the simple two-impulse

return-on-station strategy is costly fuel-wise. However the computa-

tional requirements are minimal, thrust 90 degrees to the orbit path,

the magnitude depending upon how much warning time exists and how big

a miss is required. The required radial velocity is given by

4. = Rmiss(5 - 8cosT+ 3cos2 T)/2 (4.4)
o miss T

where Rmiss - desired miss distance

T= warning time (radians)

*h

4
4. """;" 

:
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An alternative scheme which is attractive from the operational

as well as the fuel-consumption point of view is one where the

previous sequence of evasion and return to orbit is used followed by

a phasing maneuver to enable a return on station. The result would

be a three-impulse evasion-and-return-to-orbit maneuver followed by a

two-impulse phasing maneuver. This five-impulse sequence reduces to

a four-impulse sequence by merging the first phasing impulse with the

final return-to-orbit impulse. The resulting fuel cost is unchanged

by such a merger. Furthermore,several orbits could be completed in

the off-station position before the final phasing maneuver is completed.

Finally, as shown below, the fuel consumption required for the final

phasing maneuver is inversely proportional to the number of orbits

over which the maneuver takes place. Consequently by taking several

orbits to complete the phasing maneuver the fuel cost is only slightly

more than that required for evasion and return-to-orbit.

In the context of the CW equations, a phasing maneuver is one

which moves the satellite from any point on the x axis to the origin.

An examination of the CW equations (2.30) indicates that such a

maneuver is best carried out over some integral number of orbits. It

includes two impulses of equal magnitude directed along the x-axis

at the beginning and end of the maneuver. The magnitude is given by

the simple expression -

xo

x o' WT,0(4.5)

where , - number of orbits required for maneuver.
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From eq. (4.5) it can be seen that xo can be made quite small by ,.-
0

letting k become large. Hence if time is not a factor, this strategy ... -

appears to be one worth considering.

A comparison of the total fuel used to evade and return to

orbit, to evade and return on station using a one-orbit phasing
- ,' -I

maneuver, and to evade and return on station using a two-orbit phasing

maneuver is shown in Figures 4.6a and 4.6b. It is clear that if the

time is available, the additional orbit used during the phasing maneuver

reduces the fuel consumption significantly. In fact, from eq. (4.5),

the additional phasing orbit reduces the fuel by the amount 1/2 of

that for one phasing orbit.

The total maneuver times for the three cases shown in Figure 4.6

are shown in Figure 4.7. Here it is assumed that the last return-to-

orbit impulse is merged with the first phasing impulse so that no un-

necessary time is spent in the orbit off-station. It should be

emphasized that if it is desirable to remain in the orbit off-station

for some period of time, only the total time for the maneuver is

affected and not the amount of fuel consumed. A summary of

various parameters associated with these maneuvers is given in

Table 4.3.

Although the above maneuver sequence for returning-on-station

is a good candidate from both the operational and fuel-consumption
9 viewpoints, the total maneuver time for best results becomes quite ,.

lengthy. However before discussing the time-constrained results in

the next section, it is important to investigate some additional un-

constrained-time maneuvers. These maneuvers are less flexible than

7j, .r
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those discussed previously in that no waiting time is allowed in any

of the intermediate orbits and consist of three impulses, the evasive

impulse, the return-to-station impulse, and the final impulse to null

the relative velocity. Using this scenario one finds several locally-

fuel-optimal solutions which depend upon the total maneuver time.

Several of these families of local-minimum solutions are discussed

here.

The basic maneuver consists of an initial evasive impulse which

moves the target away from the origin to be at a specified distance in

a specified time. For the cases presented here this time and distance -

are either those established by the basic evasive maneuver presented ,.-.,

in Figures 4.2 and Table 4.1 or a distance of unity for all times.
-" . 1- .

Sometime after the specified distance is reached a second impulse is

executed which starts the vehicle on a return orbit to the origin

(i.e., "on station"). Upon arriving at the origin, the velocity is

nulled. The maneuver can be done in any specified amount of time

provided it is larger than that at the specified miss distance. How- .

ever of interest in the present section is the behavior of the maneuver

if unconstrained by time.

The results of this investigation are presented in Figures 4.8a, %V

4.8b and 4.9 where the total fuel consumed and the total maneuver time

are shown for various evasion times respectively. Additional informa-

tion is given in Table 4.4. Four families of curves are shown, each

one corresponding to a local minimum in the range of total maneuver

time indicated. Curve A in Figure 4.8 represents the minimum fuel

expenditure for various evasion times for total maneuver times in the
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neighborhood of fifteen radians or about two-and-a-half orbits. Curve

B gives similar information for total maneuver times in the neighbor-

hood of eight radians or one-and-a-half orbits. Curve C is for ten-

and-one-half radians or one-and-two-thirds orbits while Curve D is

for approximately six radians or one orbit.

The angles for the first impulse to carry out the maneuvers

associated with Curves A and B are about 100 and 92 degrees respective-

ly, both in the second (or fourth) quadrant. Those for Curves C and

D are in the first (or third) quadrant at about 81 and 88 degrees

respectively. In the case of Curve D, the initial impulse angle in-

creases to 90 degrees for an evasion time of 1.35 radians, at which

time the second impulse collapses to zero giving the two-impulse solu-

tion discussed earlier.

The significance of these families of local-minimum fuel consump-

tion is apparent when considering a time constraint on the overall

maneuver. For the time-unconstrained case a good strategy is to per-

form the optimum return-to-orbit maneuver followed by a phasing

maneuver which is completed over several orbits. Under these circum-

stances the total delta-V would approach that for a pure return-to- . .,

orbit as the number of phasing orbits becomes large. However once a

time constraint is placed on the completed maneuver, the strategy

changes significantly, as shown in the next section.

It should be pointed out that additional four-impulse strategies

other than the return-to-orbit-phase sequence discussed above were

investigated. However in all attempts one of the impulse magnitudes

faded to zero with convergence of the optimization process, reducing

-.--
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the result to one of the three-impulse strategies already discussed.

p

Time-Constrained Maneuvers--Return-to-Orbit

As discovered earlier, the strategy for optimal evasion and

return-to-orbit consists of an evasive impulse, after which the target

coasts to apogee, followed by a Hohman-like return-to-orbit. The time

of flight takes somewhat less than one orbit to complete, the exact

times for various evasion times given in Table (4.1). If however the

total maneuver time is constrained, the return-to-orbit maneuver is

altered and the fuel consumption is increased as shown below. Although

the results presented are for evasion times of 1 and 2 radians, the

general trends indicated are typical for all evasion times (a property

which is not true when considering a time-constrained return-on-station).

The time-constrained return-to-orbit maneuver results for

evasion times of 1 and 2 radians are presented in Fig. 4.10 and Table

4.5. Here it is seen that the fuel consumed increases rapidly as the

total maneuver time approaches the evasion time. In addition we can

note that eventually the total time of flight is so short that the

second impulse to initiate the return to orbit occurs at the specified

evasion time. Hence the maneuver is such as to just satisfy the

evasion constraint when the return impulse is initiated. ,-.

Time-Constrained Maneuvers--Return-on-Station

In the previous section it was observed that as the overall

maneuver time is reduced the fuel cost increases in a fairly smooth

manner. However for the return-on-station problem a similar smooth

curve is not found. The reason for this difference is the existence

U,.
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of the local minima discussed earlier. As the total maneuver time is

reduced the fuel cost for a given evasion strategy increases.

Eventually as the time constraint is reduced further, the fuel costs

increase to a value which is greater than that for an unconstrained ,,L,

local minimum of possibly less time. At this point the evasion

strategy changes abruptly. Such an occurrence happens more than once

as the total time for the maneuver is reduced. The actual behavior
I

depends upon the specified evasion time.

As an example the strategy for an evasive maneuver is tracked as

the total time allowable for the completed maneuver is reduced for a

specified evasion time of one radian. It can be seen from Tables 4.1

and 4.4 that the cost for a return-on-station for strategy "A" using

a three-impulse sequence is the same (to three decimal places) as the

cost simply to return to orbit. Hence it is clear that a large number

of phasing orbits would be required for the return-to-orbit-phasing "

maneuver to be better than strategy "A". Hence for an evasion time of -

one radian with the total maneuver time allotment greater than 14.5

radians (2.31 orbits) the fuel costs provided by strategy "A" is

optimal.

It should be noted that this statement is clearly not true for

different evasion times. From Figures 4.6 and 4.8 it can be seen that

fuel cost associated with the return-to-orbit phase-maneuver with two

phasing orbits approaches that of strategy "A" as the evasion time

exceeds 3 radians. For more phasing orbits the fuel cost would

become less than that for strategy "A" at some lower evasion time.

On the other hand, for an evasion time of 0.5 radians it appears that
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strategy "B" is the best for all total maneuver times exceeding 7.9

radians since the return-to-orbit-only fuel costs are about the same

as strategy "B".

Returning now to the case for the evasion time equal to 1 radian,

we can examine the effect of constraining the total maneuver time.

A summary of results is given in Figure 4.11 and Table 4.6. Here we

see that several strategies come into play as the total time for

maneuver is restricted. As indicated previously, for times greater

than 14.5 radians, strategy "A" is the minimum-fuel strategy. As the

total time is reduced to values below 14.5 radians the "constrained

strategy A" uses an increased amount of fuel as shown in Figure 4.11.

Eventually the amount of fuel consumed increases above that used by

strategy "B" for much less time. Here that situation occurs for

constrained time values slightly less than 14.0 radians. At this

point the best fuel strategy is "B" until the total maneuver time is

reduced to less than 7.96 radians. Here a "constrained strategy B" is

used until its fuel consumption exceeds that used by strategy "D".

In this case this occurs for times-of-flight less than approximately

6.3 radians. Further reduction in total maneuver time causes a

"constrained strategy " to be the optimal with respect to fuel

consumption. As might be expected the fuel penalty for very short

maneuver times is quite severe. One notes a qualitative similarity to

families of time-constrained attack maneuvers seen in the preceding

section.

An additional characteristic of these constrained maneuvers can

be observed in vvble 4.6. For the shorter maneuver times, the
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return-to-station impulse (the second impulse) occurs at the specified

time and distance from the origin for the evasion portion of the

maneuver. Hence it just satisfies that constraint and then returns.
This explains the nice even times-of-flight noted for the three ___

shortest total maneuver times.

Evasive Maneuvering Away from Line

The previous results describe various strategies for moving away

from the nominal target position (origin) and returning-to-orbit or

returning-on-station. It was assumed that the threat occurred at a

specific time (evasion time) and at a specific point (the origin).

Little consideration was given for the possibility of a closer encounter

either before or after the specified evasion time. It was observed in

Reference 3 that the miss distance can be significantly less than the

distance computed at the specified evasion time. It was also shown in

Reference 3 that since the interceptor is near the apogee of its orbit -

when it encounters the target its velocity is generally slower than

that of the target and that a good approximation of the interceptor

orbit with respect to the target orbit is a straight line which passes

through the origin. Consequently a reasonable strategy for evasion

would be to move as far as possible from a given line in a specified

time with a specified amount of fuel.

As in the case of the pure evasion away from the origin, the

problem of pure evasion away from a line can be solved analytically.

Using arguments similar to that for moving away from the origin, we will

assume we have an initial impulse of unit magnitude of some angle y.

L.. -----
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The object is to move to the farthest distance from a line passing

through the origin at some angle a with respect to the x axis, (see

Fig. 2.1). Assuming a less than 90 degrees, an expression for an

outward pointing unit vector perpendicular to the line is given by

""- sin a i + cos a j (4.6)

The object is to maximize the distance perpendicular to the line given

by

d =n • (4.7)

where r x i + y "

and x and y are given by the CW solution (eq. 2.30) with the initial

position at the origin. Equation (4.7) becomes

d - [cosy (4sinT - 3T) + 2siny (1 - cosT)] sina

+ [-2cosy (1 - CosT) + siny sinT) cosa (4.8) y"

where T = evasion time ,,

The initial impulse angle which maximizes this distance is given by

Tan y = 2 (1 - cosT) sin - sinT cosa-
(4sinT - 3

T) sina + 2 (I - cosT) cosa (4.9)

This angle is shown in Figure 4.12 for various evasion times. The -r-

corresponding distances are displayed in Figure 4.13. Also shown for

comparison purposes are the corresponding two curves for pure evasion

from the origin calculated previously.

For low evasion times the distances from the origin and from the

various lines are nearly equal although the initial impulse angle is

significantly different, increasing in value as the line angle with

,.

• " . . . . ' "'#: LcL;_ . :,"'," : " " #" "; .. .':.'_' . ,' ,', .; -',' .'-' ' :- : .- '[; -.* 
. .' .
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the x axis increases. As the warning time increases, the initial im-
pulse required for the optimal evasion also increases to angles which

are 20 to 30 degrees more than that required for evasion from the

origin.

Another feature which is significantly different from that

associated with evasion from the origin is that the maximum distance

obtainable does not monotonically increase with evasion time. Hence

the strategy for evasion from a line can include a waiting period if

the evasion time is greater than that required to reach the maximum

distance from the line. Consequently in the subsequent sections we

are interested only in evasion times less than or equal to those which

provide the maximum miss. From Figure 4.13 these times are given by

3.1, 2.8, 2.6, 2.3 and 2.1 radians for lines at angles 0, 5, 10, 15

and 20 degrees respectively.

A summary of the results for pure evasive maneuvers from a line

are presented in Table 4.7.

Evasion from Line and Return-to-Orbit
The maneuver discussed in this section is analogous to the

evasion from the origin and return to orbit discussed previously. As

in that case the proper maneuver is to make the evasive impulse, remain

in the evasion orbit until apogee is reached, and then perform a

Hohman-like return. Although the complete maneuver takes just under

one orbit to complete, there is some flexibility in that the vehicle

could remain in the evasion orbit until the second (or more) apogee,

pass before initiating the Hohman-like return. Consequently some
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multiple of 2n can be added to the total maneuver time without

changing the fuel cost.

Results for a line at 5 degrees with respect to the x axis are

given in Figures 4.14, 4.15a, and 4.15b and in Table 4.8. In Figure

4.14 we can note that the initial impulse angle for evasion from a-'

line and return-to-orbit approaches that for pure evasion from a line

at larger evasion times and in fact becomes the same in this case when

the evasion time is 2.8 radians. At the same point we can note from

Figure 4.15a that the total delta-V approaches the value of 2. For

this value of evasion time (2.8 radians) the pure-evasion-orbit

coincides with the evasion-and-return-orbit so that the second impulse

decreases to zero and the vehicle returns to the original orbit with

the same velocity as it left. Hence the nulling impulse equals the

original impulse for a total value of 2. We can also note that the

initial impulse is along the negative x axis (1800).

Figure 4.16 shows the total maneuver time as it depends on

evasion time. A complete maneuver can always be carried out in less

than one orbit. However as indicated previously any multiple of 2n

can be added to the total maneuver time without changing the initial
angle of impulse or the total fuel consumption.

Several attempts were made to search for minimum-fuel solutions

with four impulses. However all four impulse solutions reduced to

three when coupled with the optimization algorithm.

AA,..
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Evasion from Line and Return-on-Station

The strategies for returning to the original position in orbit

for the case of evasion from a line are analogous to those considered

for evasion from the origin. They include: 1) a two-impulse maneuver

sequence in which the initial impulse injects the vehicle into an

evasion orbit which coincides with a return orbit, 2) a four (or five)

impulse maneuver which consists of a return-to-orbit maneuver dis-

cussed in the previous section, followed by a phasing maneuver taking

place over one or more orbits, and 3) a three-impulse maneuver

consisting of an evasive impulse, an intercept or return-to-station

impulse, and a velocity-nulling impulse to complete the maneuver.

Each of these is discussed below. ..

As observed previously, the simple two-impulse return-on-station

is possible only if the first impulse is along the y axis (in the

radial direction). Under these circumstances the evasion orbit appears

as an ellipse which is tangent to the y axis and whose major axis lies

along the x axis. If the impulse is outward, the ellipse lies on the

positive x axis. Consequently the vehicle in the evasion orbit will

return to the origin in one orbit period (or in any number of orbit

periods) at which time a velocity-nulling impulse is required which is

equal in magnitude and opposite in direction to the initial evasive

impulse.

For the purposes of comparison it is necessary to constrain the

motion so that the vehicle is at least the specified distance from the

line for the specified evasion times as shown in Figure 4.13 and

Table 4.7, or at a distance of unity. However, because of the relation
&.
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of the evasion-orbit ellipse and the straight line it is clear that _-_

there is a point (actually two points) on the evasion orbit which is

the furthest from the line. Consequently for any evasion times greater

than the time it takes to get to this point, the best strategy is to

wait, deferring action until the evasion time equals the time it takes

to reach that point. Two calculations must be made, the time it takes

to get to the farthest distance from a line, and the fuel necessary

to equal the distances specified in Figure 4.13 up to and including

that time.

A general expression for the fuel required to meet the specifi-

cations of Figure 4.13 for the special case of a 90 degree initial

impulse can be obtained from eq. (4.8) by setting y = 90' and re-

arranging. The resulting delta-V requirement is given by

yo AV, = R /[2 (cosT - 1) sint + sinT cosci] (4.10)
0 perp

where R = desired distance from line
perp

T = evasion time (radians)

Equation (4.10) is valid for evasion times up to and including that

required for reaching the maximum distance from the line. This time %q

is determined by differentiating eq. (4.8) with respect to T and

setting the result equal to zero. The result is expressed in terms of

the following equation for evasion time for maximum distance from a

line at angle a for the special case of a 900 first impulse:

Tant= T cot a (4.11)

The results of these calculations are shown in Figures 4.17a

and 4.17b and Table 4.9 for evasion times up to those determined by

'Ty., ** .'-. 4%..% .4 ... .~ . .
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eq. (4.11). For evasion times beyond this value the fuel consumption

is constant because the vehicle waits. Although not very fuel-

efficient, this strategy is easy to implement. Once the relative

orbit line angle is known, one thrusts immediately at 90 degrees if

the evasion time is less than the maximum distance time for that line

angle. If the warning time is greater than that value wait, and

thrust at 90 degrees when the appropriate evasion time is left.

By adding a phasing maneuver to the return-to-orbit strategy, the

vehicle can be made to return-on-station. Details of this phasing

operation were discussed previously where the extra fuel cost was

found to be related to eq. (4.5). If that equation is used with the

return-to-orbit results just developed for evasion from a line, the

total fuel and total time requirements for a return-on-station maneuver

can be determined. These results are displayed in Figures 4.18a,

4.18b and 4.19 and in Table 4.10.

The results here are very similar in nature to the results ob-

served for the evasion-from-the-origin cases discussed previously.

Again the extra fuel used for phasing is reduced for each additional

phasing orbit. In the limit as the number of phasing orbits grows

large, the total fuel to return on-station appraoches that for return-

to-orbit. The price, however, is paid in time. The cost in time is

shown for the first two phasing orbits in Figure 4.19.

The reader should be reminded that the return-to-orbit final

impulse can be merged with the initial phasing impulse to result in a

four-impulse maneuver sequence. On the other hand these impulses may

be kept separate allowing the vehicle to remain in orbit but off-station

:, v-'-_.'-.":..'..",'-. -,"..-. ' ,":- " :- : '-"." , ' .- " ,- "" ". ": '-": X, . ': " ' , ' .' : .' : ; rlo -
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for any desired amount of time before initiating the phasing impulse

Without any additional cost in fuel. The resulting five-impulse :

maneuver is the most flexible of all since the return-on-station can ,"-\ -.

occur at any specified time as long as it is greater than that required

for one phasing orbit with no wait as shown in Figure 4.19.

The final strategy to be discussed is the three-impulse evasion-

from-a-line and return-on-station. There are several locally optimum

solutions similar in nature to those observed for the case of evasion , ,

from the origin and return-on-station. Two of these are shown in .

Figures 4.20 and 4.21. Additional details concerning these solutions

are given in Table 4.11.

If we examine Figure 4.20 with concern for fuel consumption only

we can see that the return-to-orbit with a large number of phasing

orbits is the best strategy with fuel consumption approaching that for

the return-to-orbit case. For evasion times less than 1.2 radians,

the three-impulse maneuver associated with strategy "A" uses less fuel

than the return-to-orbit with a two-phasing-orbit strategy. In all

cases strategy "A" uses less fuel than a return-to-orbit with one

phasing orbit maneuver. The factor which ultimately lets one pick a -

particular strategy is the time allotted for the maneuver. The three-

impulse strategy "A" takes about the same time as the return-to-orbit-

with-one-phasing-orbit procedure for long evasive times (2.5 radians)

but take significantly less time for short evasive times (0.5 radians). i

On the other hand the three-impulse strategy "B" requires significantly

less time than both of the above maneuvers at the price of using

considerably more fuel. However at low evasion times strategy "B"

01
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uses less than the one orbit phasing maneuver, hence it has both a

time and fuel advantage.

An interesting characteristic of maneuver "B" is that the inter-

cept impulse to return the vehicle on-station occurs at the specified

evasion time indicating that this strategy is most likely the fastest

three-impulse optimal maneuver possible.

Time-Constrained Maneuvers--Return-to-Orbit

Although some discussion concerning time was included in the

previous evasion-from-a-line results, the main purpose was to present

the time-open strategies. In this section the return-to-orbit maneuver

is examined subject to a constraint on the overall maneuver time. For

the purposes of discussion only one case will be considered, evasion

from a line angled at 5 degrees with respect to the x axis with an

evasion time of 1 radian. We will examine the behavior of the minimum-

fuel solutions as the maneuver time is reduced below the values indi-

cated in Figure 4.19.

The results are presented in Figure 4.22 and in Table 4.12. As

expected, the fuel cost increases as the total maneuver time is reduced.

The best maneuver consists of a three impulse sequence until an

evasion time of slightly less than 3.0 radians is encountered. At this

point the middle impulse fades out to zero and a two-impulse maneuver-

sequence results. In addition we can note from Figure 4.23 that, as

the constraint on the maneuver time is reduced, the initial impulse

angle also is reduced until the two-impulse solution is reached with

an initial impulse angle of 90 degrees. At this point a further

* * * -\ \ ~ ** ~ * ~ .* '~ p % 'h %..
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reduction in total maneuver time again requires a three-impulse
I.

maneuver sequence to minimize the fuel consumption. For these tra-

jectories, however, an additional constraint enters into the problem

as indicated by the time-of-flight for the first orbit (see Table

4.12). Here we see the first orbit just satisfies the distance-from-

the-line condition when the impulse to return to orbit occurs. The

effect of this constraint is to make the initial impulse angle increase

as the time is reduced further. The curves for a continued two-impulse

strategy as time is reduced are shown as dashed lines in Figures 4.22

and 4.23 for comparison purposes.

Time-Constrained Maneuvers--Return-on-Station

The final strategy to be investigated is that which includes an
evasive maneuver from a line and a return-on-station with the total.

maneuver time constrained. The problem examined in the previous section

is continued here. The results for an evasion time of 1 radian are

presented in Figures 4.24 and 4.25 and in Tables 4.13 and 4.14.

The longer maneuver times favor the return-to-orbit-phase-maneuver

strategy with more phasing orbits with increasing time. Beyond 4 or 5

phasing orbits the decrease in fuel is small. For example the total

fuel used for a 4-phasing-orbit procedure is 2.108 while for 5 phasing

orbits it is 2.042, an improvement of about 3 percent. The data of

Table 4.14 are obtained from the constrained return-to-orbit results

of Table 4.12 and the use of eq. (4.5).

The fuel costs for the various maneuvers are shown in Figure

4.24 from which a constrained-time strategy can be developed. For

large maneuver times greater than about 30.0 radians one uses a
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return-to-orbit with a 4-phase-orbit procedure. For times between

24.4 and 30.0 radians one uses an unconstrained 3-phase-orbit maneuver,

switching to the constrained return-to-orbit-3-phase maneuver as times

A,
decrease to 23.6 radians. For times between 8.5 and 24.4 an un-

constrained three-impulse maneuver "A" is desired, with the "constrained

maneuver A" used for times between 6.3 and 8.5 radians. Finally the

"constrained strategy B" should be used for short warning times less

than 6.3 radians. The corresponding initial impulse angles are shown

in Figure 4.25.

Sunnary

The strategies for minimum-fuel evasion-from-the-origin and

evasion-from-a-line have been investigated for the cases of pure

evasion, evasion and return-to-orbit and evasion and return-on-station.

The pure evasion results consist of initial impulse angles which

maximize the appropriate distance for a given amount of fuel. The

results are independent of orbit altitude. For the case of evasion-

from-a-point, the greater the warning time, the greater the distance

achievable (at least within the warning time considered). For the

case of evasion-from-a-line, however, there is an evasion time which

gives the maximum distance. Warning times greater than this value

are not needed.

The return-to-orbit strategies are basically the same for the

evasion-from-the-origin or evasion-from-a-line scenarios. They

consist of the evasive maneuver, a coast out to apogee and a Hohman-

like return to orbit. The feature here is the flexibility of the

. .. .. ". .
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maneuver, allowing the return-to-orbit after one or more orbit

periods.

Return-on-station strategies generally can be considered to * '

be one of two forms, a return-to-orbit maneuver followed by a phasing

procedure which can take one or more orbits, or a three-impulse

maneuver which consists of an evasive impulse followed by an intercept

impulse and concluded by a velocity-nulling impulse. In general for

shorter evasive times the three-impulse maneuver is most efficient. .

Finally time-constrained maneuvers were considered with the .

general result indicating that fuel costs increase as the total

maneuver time allowed is reduced. Additionally, as the total maneuver

time is reduced, discontinuities in strategy are encountered to keep

the fuel costs minimal. -.L •A

.

*'- P -*~
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TABLE 4.1

-~Pure Evasion from Origin

Evasion Delta-V Time-
Time Angle Distance AV1  AVtoa of-Flight

0.5 104.3 0.542 1.0-

1.0 118.3 1.338 1.0-

1.5 131.3 2.628 1.0 -

2.0 142.2 4.560 1.0 -

2.5 151.0 7.102 1.0 -

3.0 158.1 10.038 1.0 -

Evasion from Origin and Return to Orbit

0.5 92.5 0.542 1.004 1.508 4.800

1.0 101.0 1.338 1.027 1.568 5.084

1.5 112.3 2.628 1.046 1.672 5.399
2.0 124.3 4.560 1.046 1.778 5.651

2.5 135.7 7.102 1.035 1.860 5.830

3.0 145.9 10.033 1.023 1.917 5.955

- . . . . ........ ........... .J '. . . I
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TABLE 4.2

Two-Impulse Evasion from Origin and Return-on-Station

Evasion Minimum
Time (rad) Distance AV1  AVtoa

I tota

0.5 0.542 1.001 2.002

1.0 1.338 1.073 2.146

1.5 2.628 1.246 2.492

2.0 4.560 1.533 3.066

2.5 7.102 1.945 3.890

3.0 1G.J38 2.521 5.042
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TABLE 4.4

Three-Impulse Return-on-Station Parameters

Evasion Angle of Delta-V Time of Flight

Time Initial Impulse AV1  AV Orbit 1-Orbit 2 Total f l
0.25 100.63 1.000 1.526 5.085 9.387 14.464
0.5 100.64 1.000 1.527 5.084 9.382 14.466

1.0 100.72 1.028 1.568 5.074 9.427 14.501

1.5 100.95 1.124 1.717 5.049 9.543 14.589
2.0 101.63 1.279 1.969 4.989 9.802 14.791

2.5 104.98 1.411 2.289 4.918 10.492 15.410

3.0 117.54 1.306 2.588 5.169 11.461 16.630

Maneuver B

0.25 91.07 1.000 1.501 4.752 3.136 7.888 .
0.5 91.11 1.006 1.509 4.745 3.154 7.900

1.0 91.40 1.066 1.601 4.706 3.257 7.963 , .%

1.5 92.01 1.220 1.840 4.635 3.460 8.095
2.0 93.81 1.447 2.222 4.531 3.815 8.346

2.5 97.14 1.638 2.715 4.447 4.475 8.922

3.0 107.23 1.560 3.208 4.699 5.247 9.946

%1 %



80

TABLE 4.4 (cont.)

Evasion Angle of Delta-V Time of Flight
Time Initial Impulse AV1 i Atotal Or I Orbit 2 Total

Maneuver C

0.25 80.78 1.002 1.523 7.557 3.091 10.648
0.5 80.82 1.018 1.546 7.564 3.073 10.637
1.0 80.93 1.129 1.715 7.590 3.002 10.592

1.5 81.10 1.390 2.116 7.624 2.915 10.539

2.0 81.26 1.835 2.802 7.656 2.827 10.484
2.5 81.43 2.535 3.886 7.688 2.743 10.431

Mane'uver 0

0.25 68.40 1.007 1.827 0.912 4.616 5.528 LW
0.5 72.68 1.031 1.879 1.034 4.615 5.649

1.0 82.91 1.116 2.114 1.374 4.627 6.001

1.3 88.84 1.175 2.326 1.596. 4.641 6.237
1.35 89.81 1.184 2.365 1.633 4.643 6.276
1.40 90.00 1.202 2.404 - 6.283 6.283
2.0 90.00 1.533 3.066 - 6.283 6.283

2.5 90.00 1.945 3.890 - 6.283 6.283

3.0 90.00 2.521 5.042 - 6.283 6.283

Maneuver E

1.5 100.43 1.129 1.720 11.330 15.767 27.097

2.0 100.58 1.297 1.981 11.298 15.884 27.182
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TABLE 4.5 Y4

* Time-Constrained Evasion and Return-to-Orbit

Evasion Time = 1 Radian

Angle of DlaVTm fFih
Constraint Initial DlaVTm fFih

Time Impulse AV1  A~Vto Orbit 1 Orbit 2 Total

6.000 101.04 1.027 1.568 1.943 3.142 5.085

5.000 99.79 1.031 1.569 1.948 3.052 5.000 F.4

4.500 93.20 1.057 1.609 1.910 2.590 4.500

*4.000 87.50 1.087 1.690 1.798 2.202 4.000

3.500 82.24 1.120 1.806 1.647 1.853 3.500

3.000 77.12 1.158 1.956 1.474 1.526 3.000

2.500 71.98 1.201 2.140 1.291 1.209 2.500

2.000 66.92 1.248 2.360 1.108 0.892 2.000

1.500 61.78 1.299 2.598 1.028 0.472 1.500

Evasion Time =2 Radians

6.000 124.33 1.046 1.778 2.510 3.142 5.651

5.000 117.20 1.172 1.898 2.623 2.377 5.000

4.000 94.93 1.409 2.366 2.343 1.657 4.000

3.000 85.54 1.672 3.162 2.000 1.000 3.000
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TABLE 4.6

Fuel Consumption in the Presence of Time Constraints

,.. Angle of Delta-V Time-of-Flight~~Time Initial ;-"-

Constraint Strategy Impulse AV1  AVtotaI Orbit 1 Orbit 2 Total

14.501 A 100.72 1.028 1.568 5.074 9.427 14.501

14.000 A 100.38 1.029 1.589 5.220 8.780 14.00

13.000 A 99.24 1.033 1.829 5.477 7.523 13.00

13.000 B 91.40 1.066 1.601 4.706 3.257 7.963

7.000 B 89.79 1.074 1.742 5.173 1.827 7.000

6.500 B 89.77 1.074 1.989 5.334 1.166 6.500

6.300 B 89.98 1.073 2.134 5.356 0.944 6.300

6.300 D 82.88 1.112 2.114 1.374 4.627 6.001

6.000 D 82.88 1.112 2.114 1.374 4.626 6.000_ .

5.000 D 70.84 1.211 2.289 1.239 3.761 5.000

4.300 D 64.08 1.275 2.523 1.001 3.299 4.300

4.000 D 62.02 1.296 2.646 1.000 3.000 4.000

3.000 D 55.03 1.369 3.267 1.000 2.000 3.000

2.000 D 47.52 1.446 4.846 1.000 1.000 2.000

N- 6K~j ": ."U
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TABLE 4.7

Pure Evasion from Line

Evasion C= 0 - = 5 = 10

Time Angle Distance Angle Distance Angle Distance

0.5 117.05 0.538 121.56 0.535 136.59 0.531

1.0 137.53 1.246 141.34 1.214 145.38 1.177

1.5 151.78 2.109 155.28 1.989 159.26 1.862

2.0 162.20 2.975 165.86 2.697 170.37 2.413

2.5 170.57 3.652 174.87 3.156 180.78 2.661

3.0 177.97 3.982 183.65 3.236 192.68 2.516

ct1 ct 20

0.5 130.76 0.528 135.48 0.523
1.0 149.67 1.138 154.29 1.098

1.5 163.82 1.732 169.14 1.601

2.0 176.09 2.129 183.53 1.857

2.5 189.32 2.187 202.23 1.770

3.0 208.28 1.886 235.17 1.497

". .'..



84 i..'

TABLE 4.8

Evasion from Line and Return to Orbit

a 50

Evasion Perpendicular Delta-V Time of Flight

Time Angle Distance AV AV Orbit 1 Total
I total

0.5 107.74 0.535 1.030 1.612 2.140 5.282 '.

1.0 125.00 1.214 1.042 1.777 2.521 5.663

1.5 142.23 1.989 1.026 1.897 2.772 5.914

2.0 157.70 2.697 1.010 1.964 2.939 6.081

2.5 171.81 3.156 1.001 1.996 3.163 6.211
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TABLE 4.9

Two Impulse Evasion from Line and Return-on-Station

Minimum et-
Evasion PerpendicularDet-
Time Distance AV A

1 total

, =00

0.5 0.538 1.122 2.244I
1.0 1.245 1.480 2.960
1.5 2.109 2.114 4.228
1.571 2.236 2.236 4.472

CL 50

0.5 0.535 1.172 2.344 -~p

1.0 1.214 1.602 3.204
1.398 1.830 2.186 4.372

a=100

0.5 0.531 1.236 2.472
1.0 1.177 1.759 3.518
1.232 1.500 2.152 4.304

a 15'

0.5 0.528 1.321 2.642
1.0 1.138 1.980 3.960
1.079 1.238 2.141 4.282Y

a=200

0.5 0.523 1.426 2.852
0.942 1.031 2.156 4.312
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TABLE 4.11

Evasion from Line and Return-on-Station ParametersL

Evasion Angle of Delta-V Time of Flight L
Time Initial Impulse AV1  AVtoa Orbit 1Orbit 2 Total

Maneuver A 5*

0.5 91.94 1.150 1.734 4.642 3.440 8.082

1.0 94.23 1.400 2.295 4.488 4.013 8.501

1.5 105.08 1.562 3.074 4.626 5.137 9.764

2.0 130.24 1.230 3.690 5.413 5.823 11.236

2.5 162.89 1.022 3.966 6.051 6.228 12.174

Maneuver B =5'

0.5 90.00 1.172 2.344 6.282 - 6.282

1.0 95.66 1.437 3.194 1.000 5.296 6.296

1.5 125.48 1.152 4.228 1.500 5.101 6.601

2.0 154.14 1.021 5.095 2.000 4.996 6.996

2.5 184.58 1.014 5.677 2.500 4.901 7.401

el NA
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TABLE 4.12

Effect of Maneuver Time Constraints on Evasion from

Line and Return-to-Orbit Maneuver

a 50 T 1.0 d(T) 1.214

Three Impulse

"m,1 Ange of T:-
Ange Delta-V Time-of-Fl ight

Constrai.nt Initial
Time Impulse AV1  AVtotal x Final Orbit 1 Orbit 2".

5.663* 125.00 1.042 1.777 12.506 2.521 3.142

5.000 110.01 1.171 1.910 9.700 2.678 2.322

4.500 102.10 1.291 2.130 8.199 2.582 1.918

4.000 96.01 1.422 2.432 7.128 2.423 1.577

3.500 91.13 1.563 2.830 6.407 2.244 1.256

3.000 87.31 1.702 3.351 6.056 2.065 0.935

2.800 101.89 1.295 3.486 3.782 1.000 1.800

2.500 103.80 1.261 3.850 3.080 1.000 1.500

2.000 108.64 1.188 4.830 2.114 1.000 1.000

1.500 120.45 1.070 7.498 1.184 1.000 0.500
..

Two Impulse

2.8 85.07 1.801 3.602 5.878 2.800 -

2.5 80.57 2.048 4.096 5.564 2.500 -

2.0 72.20 2.809 5.617 5.545 2.000 -

*unconstrained time-of-flight

.1 r

-jI.



89

TABLE 4.13

Effect of Maneuver Time Constraint on Evasion-from-Line

and Return-on-Station Maneuver -

= 50 = 1.0 d(r) = 1.214

tAngle of Delta-V Time-of-FlightConstraint Initial "

Time Strategy Impulse AV] AVtotal Orbit 1 Orbit 2 Total

8.501* A 94.23 1.470 2.295 4.488 4.013 8.501

8.000 A 92.06 1.533 2.319 4.646 3.353 8.000

7.500 A 90.67 1.578 2.409 4.888 2.612 7.500

7.000 A 89.94 1.603 2.604 5.144 1.855 7.000

6.500 A 89.84 1.606 2.976 5.316 1.184 6.500 .
6.000 A 86.82 1.723 3.429 2.255 3.745 6.000

6.296* B 95.66 1.431 3.194 1.000 5.296 6.296

6.000 B 103.53 1.266 3.318 1.000 5.000 6.000

5.000 B 118.37 1.086 3.862 1.000 4.000 5.000

4.000 B 134.68 1.007 4.429 1.000 3.000 4.000

3.000 B 157.41 1.041 4.950 1.000 2.000 3.000

2.000 B 166.79 1.107 5.744 1.000 1.000 2.000

*unconstrained time-of-flight

6..



90

TABLE 4.14

Effect of Maneuver Time Constraints on Evasion-from-

Line, Return-to-Orbit and Phasing Maneuver

a 50 = 1.0 d(i) : 1.214

Angle of
Constraint Phasing Initial

Time Orbit Impulse A~totai

30.796* 4 125.00 2.108

30.133 4 110.01 2.167

29.633 4 102.10 2.347

24.512* 3 125.00 2.219

23.850 3 110.01 2.253

23.350 3 102.10 2.420

18.229* 2 125.00 2.440

17.566 2 110.01 2.425

17.066 2 102.10 2.565

11.946 1 125.00 3.104

11.283 1 110.01 2.939

10.783 1 102.10 3.000

*unconstrained time-of-fl ight

I oi

-. . . . . . ..
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5. CONCLUDING REMARKS

In conclusion, some suggestions for further work are offered.

The maneuver-sequence-optimization computer programs can be

improved by a general restructuring and streamlining and the addition

of various features. It is believed that with further development and

systematic testing the programs have potential for real-time

generation of optimal maneuver sequences in an operational setting.

Robustness can be improved by tailoring various details of the

nonlinear-programming package to the particular class of problems of

interest. Greater user convenience can be provided by systematic

generation of first-guess maneuver sequences for general combinations

of constraints. Alterations in candidate sequences can also be

mechanized gracefully to cope with the bothersome situations in which ,..

one or more impulses fade out to zero in the course of iterations

and/or impulses coalesce into one. Auxiliary primer-vector calcula-

tions can also be added as a step towards validation of results and

generation of alternative-candidate sequences..

It would be of interest to carry out detailed comparisons of

observed Soviet ASAT maneuver sequences with optimized sequences in-

corporating various assumed combinations of operational constraints

along the lines of the present exploration. To this end an improved

launch-burn representation might be incorporated. Attention should

be given to possible sensor constraints on approach to the target.

Further evasion-and-return studies should be mainly applications-

oriented. Two one-parameter families of maneuver sequences (one up,

~P

• - . ,." '. ... ".' -.-. '. . '. . - .* ." ., *. ..%'.'." ; " ''. " - -'' . . w"



125

one down) could be pre-calculated and stored as a function of warning

time for operational in use in real time and, in some applications

(e.g., shuttle), on-board. Interactive alternating pursuit/evasion

maneuver sequences are of interest for future scenarios featuring

reduced tracking and communications delays.

7 0 .
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APPENDIX A

THE OPTIMIZATION ALGORITHM

This chapter discusses an approach to numerical solution of

minimum problems with nonlinear constraints which is motivated by the

desire both (1) to avoid the evaluation of second partial derivatives "

necessary in second-variation procedures and (2) to improve upon the

terminal-convergence behavior of first-order (gradient) methods. The

basis of the approach is the variable-metric gradient method for find-

ing an unconstrained minimum. This method employs a metric which is

adjusted during the iteration cycles. As the metric approaches its

limit, convergence to the minimum becomes quadratic. The Davidson-

Fletcher-Powell (DFP) variable-metric algorithm and the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm are both incorporated in

the program.

In one of the two approaches to the handling of constraints, the

performance function is augmented by penalty terms which furnish a

square-law measure of the constraint violations. The augmented func-

tion is minimized, yielding an approximation to the minimum of the

original problem, with small violations of the constraints [10,11. -' -

The second approach employs gradient projection. The history of the

projection version of variable-metric optimization is somewhat

checkered. Immediately successful with linear constraints, the seem-

ingly obvious extension to the non-linear case encountered difficulty

,. _ . ., . ;.L d . . .. ,. . * * ... . . .
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in that one-dimensional searches may fail to terminate. The use of a

performance index augmented by a correction linear in the constraint

functions, however, in conjunction with a metric-update based upon .. 4'

changes in the projected gradient vector, probed successful [4].

Subsequently, refinements in the projection algorithm have made it more

than a match for the penalty version [5,12].

In the interest of making the present account somewhat self-
A

contained, the three topics of unconstrained minimization via variable-

metric gradient method, penalty-function approximation, and projection

will be taken up each in turn. Much of the material is extracted from

previous work [4,5,12,13]. -

Unconstrained Minimization via Variable-Metric Processes

The DFP variable-metric method for numerically determining the

minimum of a function of several variables combines the best features

of the conventional gradient method and Newton's method; namely the

sureness of convergence of the former and the quadratic terminal con- L _

vergence of the latter. An excellent exposition of the method, in- .-

cluding convergence proofs, .is given by Fletcher and Powell [14].
Denote the function to be minimized as f(x). It is assumed that

f is smooth to the extent of possessing continuous second partial ....

derivatives. Any starting point may be chosen (although the best a

priori guess of the minimizing x is the obvious choice to keep the

number of iterations smallest). At the starting point the gradient

vector, fx' as well as f itself, is evaluated. A change is then made

in x according to

I.,
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Ax =-H f• (A•I)

H is a positive-definite, symmetric matrix, defining the metric in

the x-hyperspace.* Its initial selection is otherwise arbitrary.

> 0 is a scalar step-size parameter.

In the DFP method, the one-dimensional minimum of f vs c is ob-

tained. This requires an accurate and sure-footed numerical search

algorithm [e.g. 15]. At the new x, the gradient vector f is again

evaluated. The H matrix is updated according to

x AXxT  H Af AfTH

H + AH H + AxTAfx fxT H (A.2)

The procedure is begun again with the new values of x, fx H.

It is shown in [14] that H remains positive-definite and that, as

x approaches the minimizing point, H approaches f-I evaluated at thexx
minimum. For quadratic f the minimum is obtained in, at most, n

steps (within round-off error); the method is quadratically convergent.

For more general functions having the smoothness properties assumed, a

Taylor expansion through quadratic terms provides a good representation

of the function in some neighborhood of the minimum. With H converged,

the minimum of f vs a then will occur for = 1. The Ax of eq. (A.1)

will approach the value given by Newton's method, namely -f f

A more general variable-metric formula is given by x

T
T HAf Af H T

H + M-I H + +___ x (A.3)
AfTAx AfT HAfx K-,~

*The inner product is given in matrix terms by <X,Y> = XTHY, and, as

usual, II X II <xx

-. .",, .,-...,-, -'.'T%'%-,.'.- -'.--,-',,',,'.. ,.-,V '- ,,', " "-,. " " " .. ."- "- "-.." ," "' ," " ;"' " -" '" '.'" .lv.
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where

H Af
V- _x - H (A. 4)

v : (Af~ Hfx) -2 LAxTAfx Af H Af .-.

which first appeared in [16]. The update is the same as DFP when the

scalar ( taken as 0 : 0. For = 1, it is the same as BFGS (Broyden-

Fletcher-Goldfarb-Shanno), the designation denoting simultaneous dis-

covery by the four investigators named.

It developed that all of the algorithms in the one-parameter

family generate the same sequence of steps when "exact" one-dimensional

searching is employed and that H + AH is positive definite whenever H S l

is, provided only that the scalar 0 _ 0. H tends monotonically toward

the inverse Hessian in a certain sense, for 0 < ( < 1. Fletcher's

effort at employing the generalized algorithm without one-dimensional

searches, and with an attempt to optimize the (-choice, produced :. .

mediocre results [16]. These facts have tended to draw attention away

from improved variable metrics. Computational experience, however, has

shown that BFGS in combination with "exact" searches is significantly

more economical of function samples, essentially because the first

step taken is a better guess than with DFP [17]. The tendency is for

DFP to overestimate the step, the reasons being poorly understood.

Penal ty-Function Approximation

The problem is to determine the values of the variables x which

minimize f(x) while satisfying constraints g(x) = 0, where x is an

V~
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n-vector,* f is a known scalar function of x, and g is an m-vector,

m < n, of known functions of x.

An approximation technique for treating constraints is due to V

Courant [10], and consists of forming the function**

f f + k 2  (A.5)
j =l A.

and, for "large" k. > 0, seeking its unconstrained minimum. Should !

solutions of both the approximation problem and the original exist,

the former approaches the latter as each k. - .

The choice of numerical values for the penalty coefficient k. is
J

subject to requirements which tend to conflict. If very large values

are chosen to diminish the constraint violations at the minimum, the .'.'

numerical errors in the products kjg. 2 and their partial derivatives

become significant. These errors, occurring in each step of a succes- I

sive improvement procedure, have an adverse effect on convergence.

Because of this effect, one may accept appreciable constraint viola-

tions in minimizing f in penalty approximation.

For notational simplicity, it is sometimes advantageous to re-

write f as

f ,+ f .gT Kg (A.6)

where K is an m x m diagonal matrix with the k. values along the

diagonal, and ( )T is the transpose of (). For treatment of

*All vectors are column vectors.

**( ). is the jth component of ().

,,
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inequality constraints, gj _0, each term in the sum (A.6) correspond-

ing to an inequality is multiplied by h(gj), the Heaviside unit step

function with argument gj.

Variable-Metric Projection

The Kelley-Speyer algorithm minimizes a scalar-valued function

f(x) (x an n-vector) subject to m equality and p inequality constraints.

(A. 7) .-2---
gj = 0 , j = l,..,m (A.7-

and

gj >0 , j = m+l,..,m+p (A.8)

The process employs the formulae

Ax :-H(fx +gxA) (A.9)

and,

(gT H T
- Hx ' (A.10)

where a one-dimensional search is carried out to minimize the function

f + gx, along the search direction, Ax. The dimension of g and A in j
eqs. (A.9) and (A.10) is determined by choice of the active-constraint

set, to be reviewed subsequently. The one-dimensional search is

terminated short of a minimum if the violations gj build up beyond

prescribed tolerances.

Optimization cycles employ an H-matrix [4] updated according to

T H(af + Ag x)(Af + Ag X)T H
H+AH H+ 4 X TX Axx x T x x (~l

AxT(Afx + Agx X) (Afx + Agx X)T H (Lfx + Agxx)

V
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in the case of DFP. An analogous formula employing changes in the

projected gradient f + g X is used for BFGS updating. The update is

performed only if

LxT(Afx + AgxX) 0 (A.12)

which assures positive definiteness of the updated H. The screening

feature represents a departure from the original [4] version of the

algorithm, this seemingly slight modification having been found to ef-

fect a considerable convergence improvement [5]. The update formula

(A.ll), for a given cycle, is the DFP update for minimization of

f + gx [4]; it guarantees definiteness of the updated H if the one-

dimensional search terminates on a minimum. The test (A.12) offers a

guarantee of definiteness without this restriction. Failure to

satisfy (A.12) is associated with nonconvexity of f + gX as a function

of a. When failure occurs, the update is merely skipped; it is not

necessary to restart H from a diagonal first guess. --

Projection optimization processes require that constraints be

-'i! restored between optimization cycles, ordinarily via one or more cor-

rection cycles, which may be of various types. In the H-update

formula (A.ll), the change in the x-vector, Ax, and the change in the

projected gradient vector, (Af + AgxX), are between the beginning andx

end of the optimization cycle only.

Implementation of the Variable-Metric Algorithms .
... _..

The material of this and the next section is mainly from [5,12]

and is includedi to make the present report relatively self-contained.

I°
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Constraint Restoration

The initial nulling out of constraint functions often proves more

challenging than subsequent restorations in that the constraint viola-

tions to be dealt with are ordinarily larger in magnitude. For

clarity, consider first the case of minimizing a scalar-valued function

f(x) (x an n-vector) subject to m equalities of the form (A.7). In

this case, the initial constraint nulling is done by minimization of

a function f:

m 2 o (f 2
kj gj 2 - fo )  (A.13)

This is a weighted sum of squares of the constraint functions plus a

term to counter gross increases in f. The term corresponds to

penalty-function treatment of an inequality fo - f > 0. Here, again,

h is the Heaviside unit step function. The k. are determined from

I Igi 12

(A.13) in its own gradient direction at gJ = 0, if the constraints

were linear. The constraint f0 - f > 0 is included quadratic-

penaltywise in eq. (A.13) only during the first restoration sequence,

with a coefficient k0 taken as 1/10 the smallest of the k. calculated

from eq. (A.14). The constant fo is estimated as the initial value

of f + gx.
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The metric employed in correction sequences may be denoted A (to

distinguish it from H of the optimization cycles). It is adjusted

approximately for changes in the k., one at a time, using

A + AA =A Ag. g A. (A.15)
+Akj g.T A gJ x -x

x x1

This correction, from [13], is based on the idea that A approximates

f The metric to start the first correction sequence is obtained
xx

as A + AA from eq. (A.15), using A = I and Ak. = k. - 1 [k. from eq.

(A.14)]. If n or more updates are completed in this sequence, the

emerging DFP metric is carried over to the next; if not, the initial

metric is carried over. In either case, adjustments for any changes

in the kj are performed via eq. (A.15) before use. Negative incre-

ments Akj are limited in magnitude to insure that the denominator of

the fraction in brackets does not nearly vanish.

The second and subsequent restoration sequences employ

= -a A gT (gT A gx) 'I g (A.16)Ax~ ~ -( x x,.;

together with a one-dimensional search versus a for a minimum of?

given by eq. (A.13), but with the last term deleted. This correction

scheme, with a = I and without a search, was originally proposed by

Rosen [ 5J; it effects restoration in a single step for linear g. The

existence of the inverse in eq. (A.16) requires that the matrix gx

have rank m. This condition is met at the constrained minimum in the

classical "normal" case in which the tangent-plane approximations to

.y*
%=A
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the constraints are well defined and distinct. Note that there is no

guarantee that eq. (A.16) provides a direction of descent for f, with

general k. values; thus the one-dimensional search may fail and

reversion to steepest-descent minimization of f become necessary.

The magnitude of constraint violation upon which optimization

cycles are terminated short of a one-dimensional minimum is cj g,

where gj is a preconceived tolerance and c3 , usually> 1, is a factor

adjusted with the aim of just permitting restoration with a single

cycle of eq. (A.16), to within the tolerance. Since the use of a

single c-factor for all constraints met with only limited success, a

c-vector is used. The components are adjusted adaptively, if somewhat

heuristically, in the following way: cj is increased 10% if a single

restoration proves successful; it is halved if two restoration cycles

are required; and it is cut to one-quarter if there are additional

cycles.

Treatment of Inequalities

It is of interest to determine a minimum subject to a mix of

equality and inequality constraints, the latter expressed by eq. (A.8).

During the initial correction sequence, inequalities are handled

penalty-function fashion, the function f* to be minimized given by

f* j=l kj gj + j =I kj gj h(-gj) + -(fo f) h(f - f0) (A.17)

with the k. determined as though all constraints were equalities:
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m+p 2
Igix I

k. = il j=l,,.., (A.18)
j I' :(A
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The determination of the active constraint set for optimization

and restoration cycles proceeds first by excluding those satisfied

with a margin gj > 5j, where gj > 0 is a preset threshold. Those

candidate inequality constraints for which gj < gj are then screened

further via the Kuhn-Tucker conditions A < 0 [18,19], using eq.J

(A.10) first with all the candidates included, then successively with

Kuhn-Tucker violators dropped, as many times as necessary, until all

X- 0 or all candidates are screened. Inactive constraints are

treated in penalty-function approximation.

In the event that there is more than one Kuhn-Tucker violator on

a given cycle, dual violators are screened out first, one at a time.

(A dual violator is a constraint whose multiplier violates X < 0 both

with all other constraint candidates considered and with other in-

equalities dropped.) This procedure has a sound theoretical basis in

the case of two inequality constraints and, in a more general setting,

represents an improvement over dropping dual violators in an arbitrary

order. The Kuhn-Tucker conditions employed apply to the problem of

minimizing a linear approximation to the function f subject to C"

linearized constraints and to a quadratic constraint on step size [5].

They become identical to the Kuhn-Tucker conditions for the original N

problem when evaluated at the constrained minimum sought. The Kuhn-

Tucker screening has generally been found to be worth the computational

F.,
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expense in reducing tendencies of constraints to switch between active

and inactive status from cycle to cycle. The effort has proceeded on

the assumption that vector-matrix operations are cheap computationally

in relation to the cost of gradient and function samples; this is

realistic for trajectory-optimization applications. A more

sophisticated and somewhat more intricate procedure for Kuhn-Tucker

screening has recently been developed [6] and is incorporated in the "--

computer program as an option.

..

j.,. .
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